Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Building Detection in satellite images by textural features and Adaboost
Date
2010-08-24
Author
CETIN, MELIH
Halıcı, Uğur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
A method based on textural features and Adaboost for detecting buildings in satellite images is proposed. Several local textural features including mean and standard deviation of image intensity and gradient, Zernike moments, Circular-Mellin features, Haralick features, Fourier Power Spectrum, Wavelets, Gabor Filters, and a set features extracted from HSV color space are extracted. Adaboost learning algorithm is employed for both classification and determining the beneficial feature subset, due to its feature selector nature. Some operation including morphological operators are applied for post processing. The approach was tested on a set of satellite images having different types of buildings and promising experimental results are achieved.
Subject Keywords
Buildings
,
Feature extraction
,
Pixel
,
Satellites
,
Classification algorithms
,
Remote sensing
,
Image color analysis
URI
https://hdl.handle.net/11511/48933
DOI
https://doi.org/10.1109/prrs.2010.5742806
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Hypothesis based detection of building with rectilinear projection in satellite images using shade and color information
Güdücü, Volkan; Halıcı, Uğur (2010-12-01)
A new hypothesis based method for detecting rectilinear buildings, that have ground projection made of combination of rectangles, in satellite images is proposed. While the hypotheses are established using the lines detected in the satellite images they are verified by using shadow and color segmentation information. The proposed method is implemented in MATLAB and tested in satellite images of different urban areas. The experimental results obtained are encouraging. ©2010 IEEE.
Building Detection With Decision Fusion
Senaras, Caglar; Ozay, Mete; Yarman Vural, Fatoş Tunay (Institute of Electrical and Electronics Engineers (IEEE), 2013-6)
A novel decision fusion approach to building detection problem in VHR optical satellite images is proposed. The method combines the detection results of multiple classifiers under a hierarchical architecture, called Fuzzy Stacked Generalization (FSG). After an initial segmentation and pre-processing step, a large variety of color, texture and shape features are extracted from each segment. Then, the segments, represented in different feature spaces are classified by different base-layer classifiers of the F...
Building detection from satellite images using shadow and color information
Güdücü, Hasan Volkan; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
A method for detecting buildings from satellite/aerial images is proposed in this study. The aim is to extract rectilinear buildings by using hypothesize first verify next manner. Hypothesis generation is accomplished by using edge detection and line generation stages. Hypothesis verification is carried out by using information obtained both from the color segmentation of HSV representation of the image and the shadow detection stages’ output. Satellite/aerial image is firstly filtered to sharpen the edges....
Sea Detection on High-Resolution Panchromatic Satellite Images Using Texture and Intensity
Besbinar, Beril; Alatan, Abdullah Aydın (2014-01-01)
In this paper, a two-stage sea-land mask detection algorithm on high resolution panchromatic images is proposed. An initial mask is generated using texture features in the first stage and this mask is refined by using intensity values in the second stage. Image is divided into windows and the Local Binary Patterns (LBP) histograms, evaluated at each window, are modelled using the sea and land sample spaces obtained by the altitude information which has very low resolution compared to the image. These models...
Model based building extraction from high resolution aerial images
Bilen, Burak; Türker, Mustafa; Department of Geodetic and Geographical Information Technologies (2004)
A method for detecting the buildings from high resolution aerial images is proposed. The aim is to extract the buildings from high resolution aerial images using the Hough transform and the model based perceptual grouping techniques.The edges detected from the image are the basic structures used in the building detection procedure. The method proposed in this thesis makes use of the basic image processing techniques. Noise removal and image sharpening techniques are used to enhance the input image. Then, th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. CETIN and U. Halıcı, “Building Detection in satellite images by textural features and Adaboost,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48933.