Building Detection in satellite images by textural features and Adaboost

Halıcı, Uğur
A method based on textural features and Adaboost for detecting buildings in satellite images is proposed. Several local textural features including mean and standard deviation of image intensity and gradient, Zernike moments, Circular-Mellin features, Haralick features, Fourier Power Spectrum, Wavelets, Gabor Filters, and a set features extracted from HSV color space are extracted. Adaboost learning algorithm is employed for both classification and determining the beneficial feature subset, due to its feature selector nature. Some operation including morphological operators are applied for post processing. The approach was tested on a set of satellite images having different types of buildings and promising experimental results are achieved.


Sea Detection on High-Resolution Panchromatic Satellite Images Using Texture and Intensity
Besbinar, Beril; Alatan, Abdullah Aydın (2014-01-01)
In this paper, a two-stage sea-land mask detection algorithm on high resolution panchromatic images is proposed. An initial mask is generated using texture features in the first stage and this mask is refined by using intensity values in the second stage. Image is divided into windows and the Local Binary Patterns (LBP) histograms, evaluated at each window, are modelled using the sea and land sample spaces obtained by the altitude information which has very low resolution compared to the image. These models...
Hypothesis based detection of building with rectilinear projection in satellite images using shade and color information
Güdücü, Volkan; Halıcı, Uğur (2010-12-01)
A new hypothesis based method for detecting rectilinear buildings, that have ground projection made of combination of rectangles, in satellite images is proposed. While the hypotheses are established using the lines detected in the satellite images they are verified by using shadow and color segmentation information. The proposed method is implemented in MATLAB and tested in satellite images of different urban areas. The experimental results obtained are encouraging. ©2010 IEEE.
Building detection from satellite images using shadow and color information
Güdücü, Hasan Volkan; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
A method for detecting buildings from satellite/aerial images is proposed in this study. The aim is to extract rectilinear buildings by using hypothesize first verify next manner. Hypothesis generation is accomplished by using edge detection and line generation stages. Hypothesis verification is carried out by using information obtained both from the color segmentation of HSV representation of the image and the shadow detection stages’ output. Satellite/aerial image is firstly filtered to sharpen the edges....
Building Detection With Decision Fusion
Senaras, Caglar; Ozay, Mete; Yarman Vural, Fatoş Tunay (Institute of Electrical and Electronics Engineers (IEEE), 2013-6)
A novel decision fusion approach to building detection problem in VHR optical satellite images is proposed. The method combines the detection results of multiple classifiers under a hierarchical architecture, called Fuzzy Stacked Generalization (FSG). After an initial segmentation and pre-processing step, a large variety of color, texture and shape features are extracted from each segment. Then, the segments, represented in different feature spaces are classified by different base-layer classifiers of the F...
Efficient Airport Detection Using Line Segment Detector and Fisher Vector Representation
Budak, Umit; Halıcı, Uğur; Sengur, Abdulkadir; Karabatak, Murat; Xiao, Yang (2016-08-01)
In this letter, a two-stage method for airport detection on remote sensing images is proposed. In the first stage, a new algorithm composed of several line-based processing steps is used for extraction of candidate airport regions. In the second stage, the scale-invariant feature transformation and Fisher vector coding are used for efficient representation of the airport and nonairport regions and support vector machines employed for classification. In order to evaluate the performance of the proposed metho...
Citation Formats
M. CETIN and U. Halıcı, “Building Detection in satellite images by textural features and Adaboost,” 2010, Accessed: 00, 2020. [Online]. Available: