Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nuclear targeting peptide-modified, DOX-loaded, PHBV nanoparticles enhance drug efficacy by targeting to Saos-2 cell nuclear membranes
Date
2018-01-01
Author
Sahin, Ayla
Eke, Gozde
Buyuksungur, Arda
Hasırcı, Nesrin
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
138
views
0
downloads
Cite This
The aim of this study was to target nano sized (266 +/- 25nm diameter) poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles carrying Doxorubicin (DOX), an anticancer agent, to human osteosarcoma cells (Saos-2). A nuclear targeting molecule (Nuclear Localization Signal, NLS), a 17 a.a. peptide, was attached onto the doxorubicin loaded nanoparticles. NLS conjugated nanoparticles surrounded the cell nuclei, but did not penetrate them. Free doxorubicinand doxorubicin loadednanoparticles entered the cytoplasm and were evenly distributed within the cytoplasm. The localization of the NLS-targetedparticles around the nuclear membrane caused a significantly higher decrease in the cancer cell numbers due to apoptosis or necrosis than the untargeted and free doxorubicin formulations showing the importance of targeting the nanoparticles to the nuclear membrane in the treatment of cancer.
Subject Keywords
PHBV
,
Biodegradable nanoparticles
,
Nuclear drug delivery
,
Doxorubicin
,
Nuclear localization signal
URI
https://hdl.handle.net/11511/29861
Journal
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
DOI
https://doi.org/10.1080/09205063.2018.1423812
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
In vitro and transdermal penetration of PHBV micro/nanoparticles
Eke, G.; Kuzmina, A. M.; Goreva, A. V.; Shishatskaya, E. I.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2014-06-01)
The purpose of this study was to develop micro and nano sized drug carriers from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and study the cell and skin penetration of these particles. PHBV micro/nanospheres were prepared by o/w emulsion method and were stained with a fluorescent dye, Nile Red. The particles were fractionated by centrifugation to produce different sized populations. Topography was studied by SEM and average particle size and its distribution were determined with particle sizer. Cel...
Tailoring the magnetic behavior of polymeric particles for bioapplications
YAKAR, ARZU; Tansik, Gulistan; Keskin, Tugba; Gündüz, Ufuk (2013-05-01)
In this study, magnetic polymeric nanoparticles were prepared use in for targeted drug delivery. First, iron oxide (Fe3O4) magnetic nanoparticles (MNPs) were synthesized by coprecipitation with ferrous and ferric chloride salts. Then, to render the MNPs hydrophobic, the surfaces were covered with oleic acid. Finally, the hydrophobic MNPs (H-MNPs) were encapsulated with polymer. The emulsion evaporation technique was used for the preparation of polymer-coated H-MNP. Poly(DL-lactide-co-glycolide) (PLGA) and c...
Core/shell type, Ce3+ and Tb3+ doped GdBO3 system: Synthesis and Celecoxib drug delivery application
Çolak, Pelin; Ulusan, Sinem; Banerjee, Sreeparna; Yılmaz, Ayşen (Elsevier BV, 2020-12-01)
In this study, luminescent and magnetic core/shell Gd1-x-yCexTbyBO3@SiO2 nanoparticles were synthesized and used to design a drug delivery system for Celecoxib (CLX). CLX was chosen as the model drug because it is a nonsteroidal anti-inflammatory drug that is highly hydrophobic with relatively low bioavailability. The core was synthesized by Pechini sol-gel method and silica coating was carried out by a Modified Stöber method. Drug loading was carried out in ethanol with high efficiency and an improved drug...
Surface functionalization of SBA-15 particles for amoxicillin delivery
Sevimli, Filiz; Yılmaz, Ayşen (2012-08-01)
The hydrothermally synthesized SBA-15 particles were surface functionalized by post-grafting synthesis method with (3-aminopropyl) triethoxy silane, mercaptopropyl trimethoxy silane and triethoxy methyl silane in order to be used as carrier materials for drug delivery. Amoxicillin was used as a model drug. The adsorption and release properties of calcined and organic-functionalized mesoporous silicas containing terminal primary amine, organothiol and methyl groups toward amoxicillin have been investigated. ...
Electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole as a novel immobilization platform for microbial sensing
Tuncagil, Sevinc; ODACI DEMİRKOL, DİLEK; Varis, Serhat; TİMUR, SUNA; Toppare, Levent Kamil (2009-09-01)
Two types of bacterial biosensor were constructed by immobilization of Gluconobacter oxydans and Pseudomonas fluorescens cells on graphite electrodes modified with the conducting polymer; poly(1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole) [SNS(NO2)]. The measurement was based on the respiratory activity of cells estimated by the oxygen consumption at -0.7 V due to the metabolic activity in the presence of substrate. As well as analytical characterization, the linear detection ranges, effects of electropo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Sahin, G. Eke, A. Buyuksungur, N. Hasırcı, and V. N. Hasırcı, “Nuclear targeting peptide-modified, DOX-loaded, PHBV nanoparticles enhance drug efficacy by targeting to Saos-2 cell nuclear membranes,”
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
, pp. 507–519, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/29861.