Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
In vitro and transdermal penetration of PHBV micro/nanoparticles
Date
2014-06-01
Author
Eke, G.
Kuzmina, A. M.
Goreva, A. V.
Shishatskaya, E. I.
Hasırcı, Nesrin
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
147
views
0
downloads
Cite This
The purpose of this study was to develop micro and nano sized drug carriers from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and study the cell and skin penetration of these particles. PHBV micro/nanospheres were prepared by o/w emulsion method and were stained with a fluorescent dye, Nile Red. The particles were fractionated by centrifugation to produce different sized populations. Topography was studied by SEM and average particle size and its distribution were determined with particle sizer. Cell viability assay (MTT) was carried out using L929 fibroblastic cell line, and particle penetration into the cells were studied. Transdermal permeation of PHBV micro/nanospheres and tissue reaction were studied using a BALB/c mouse model. Skin response was evaluated histologically and amount of PHBV in skin was determined by gas chromatography-mass spectrometry. The average diameters of the PHBV micro/nanosphere batches were found to be 1.9 mu m, 426 and 166 nm. Polydispersity indices showed that the size distribution of micro sized particles was broader than the smaller ones. In vitro studies showed that the cells had a normal growth trend. MTT showed no signs of particle toxicity. The 426 and 166 nm sized PHBV spheres were seen to penetrate the cell membrane. The histological sections revealed no adverse effects. In view of this data nano and micro sized PHBV particles appeared to have potential to serve as topical and transdermal drug delivery carriers for use on aged or damaged skin or in cases of skin diseases such as psoriasis, and may even be used in gene transfer to cells.
Subject Keywords
Mechanism
,
Cytotoxicity
,
Polyhydroxyalkanoates
,
Size
,
Microparticles
,
Nanoparticles
,
Delivery
URI
https://hdl.handle.net/11511/30842
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
DOI
https://doi.org/10.1007/s10856-014-5169-5
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
In vitro characterization and nuclear delivery of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) based nanoparticles /
Şahin, Ayla; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2015)
The use of polymeric nanoparticles in life sciences as drug carrier vehicles has been expanding because of their ability to penetrate sites not accessible to larger particles and their large surface area-to-volume ratios that increase their drug release rates. The main objective of this study was to prepare nano sized polymeric particles to deliver active compounds across cell membranes and preferably into the nuclei. This would improve the biostability of macromolecular drugs (growth factors and polynucleo...
Nuclear targeting peptide-modified, DOX-loaded, PHBV nanoparticles enhance drug efficacy by targeting to Saos-2 cell nuclear membranes
Sahin, Ayla; Eke, Gozde; Buyuksungur, Arda; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2018-01-01)
The aim of this study was to target nano sized (266 +/- 25nm diameter) poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles carrying Doxorubicin (DOX), an anticancer agent, to human osteosarcoma cells (Saos-2). A nuclear targeting molecule (Nuclear Localization Signal, NLS), a 17 a.a. peptide, was attached onto the doxorubicin loaded nanoparticles. NLS conjugated nanoparticles surrounded the cell nuclei, but did not penetrate them. Free doxorubicinand doxorubicin loadednanoparticles entered the cyt...
In vitro bone tissue engineering on patterned biodegradable polyester blends
Kenar, Halime; Hasırcı, Vasıf Nejat; Toner, Mehmet; Department of Biotechnology (2003)
This study aimed at guiding osteoblast cells on biodegradable polymer carriers with well-defined surface microtopography and chemistry, and investigating the effect of cell alignment on osteoblast phenotype expression. A blend of two different polyesters, one being natural in origin (PHBV) and the other synthetic (P(L/DL)LA), was used to form a film with parallel macro- (250 um wide) or microgrooves (27 jam wide) on its surface, by solvent casting on patterned templates. The micropatterned Si template was p...
In vivo response to biodegradable controlled antibiotic release systems
Korkusuz, F; Korkusuz, P; Eksioglu, F; Gursel, I; Hasırcı, Vasıf Nejat (2001-05-01)
In this study, the major goal was to evaluate in vitro and in vivo findings by macroscopy, radiology, and histology to determine the effectiveness of therapy of experimental implant-related osteomyelitis with antibiotic carrier rods constructed of microbial polyesters. The polymers used were poly(3-hydroxybutyrate-co-4-hydroxyvalerate) [P(3HB-co-4-HB)] and poly(3-hydroxybutyrate-co-3-hydroxy-valerate) [P(3-HB-co-3-HV)]. Both the Sulperazone(R) and the Duocid(R)-P(3-HB-co-4-HB) rods with a drug to polymer ra...
In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis
Gursel, I; Korkusuz, F; Turesin, F; Alaeddinoglu, NG; Hasırcı, Vasıf Nejat (2001-01-01)
In this study the construction and in vivo testing of antibiotic-loaded polyhydroxyalkanoate rods were planned for use in the treatment of implant-related osteomyelitis. The rods were constructed of poly(3-hydroxybutyrare-co-3-hydroxyvalerate) and poly(3hydroxybutyrate-co-4-hydroxybutyrate), carrying 50% (w/w) Sulperazone(R) or Duocid(R). They were implanted in rabbit tibia in which implant-related osteomyelitis (IRO) had been induced with Staphylococcus aureus. The effectiveness of the antibiotics in the t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Eke, A. M. Kuzmina, A. V. Goreva, E. I. Shishatskaya, N. Hasırcı, and V. N. Hasırcı, “In vitro and transdermal penetration of PHBV micro/nanoparticles,”
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
, pp. 1471–1481, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30842.