Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimization of flapping airfoils for maximum thrust and propulsive efficiency
Download
index.pdf
Date
2005-11-01
Author
Tuncer, İsmail Hakkı
Kaya, Muhammed Çağrı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
The thrust and/or propulsive efficiency of a single flapping airfoil is-maximized by using a numerical optimization method based on the steepest ascent. The flapping motion of the airfoil is described by a combined sinusoidal plunge and pitching motion. Optimization parameters are taken to be the amplitudes of the plunge and pitching motions and the phase shift between them at a fixed flapping frequency. Two-dimensional, unsteady, low-speed, laminar, and turbulent flows are computed by using a Navier-Stokes solver on moving overset grids. Computations are performed in parallel in a computer cluster. The optimization data show that high thrust values may be obtained at the expense of propulsive efficiency. For a high propulsive efficiency, the effective angle of attack of the airfoil is reduced, and large-scale vortex formations at the leading edge are prevented.
URI
https://hdl.handle.net/11511/29913
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/1.816
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Optimization of flapping motion of airfoils in biplane configuration for maximum thrust and/or efficiency
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (2007-01-01)
Flapping motion of airfoils in a biplane configuration are optimized for maximizing the thrust and propulsive efficiency. Unsteady flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel viscous flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized at a fixed flapping frequency and average distance between two airfoils. A gradient based optimization algorithm is impleme...
Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture
Tay, W. B.; de Baar, J. H. S.; Perçin, Mustafa; Deng, S.; van Oudheusden, B. W. (American Institute of Aeronautics and Astronautics (AIAA), 2018-8)
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the ...
Optimization of Flapping Motion Parameters for Two Airfoils in a Biplane Configuration
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (American Institute of Aeronautics and Astronautics (AIAA), 2009-03-01)
Flapping motion parameters of airfoils in a biplane configuration are optimized for maximum thrust and/or propulsive efficiency. Unsteady, viscous flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized for a range of flapping frequencies. A gradient-based optimization algorithm is implemented in a parallel computing...
Estimation of effective parameters and operational response of tuned vibration absorbers
Özden, Hasan Can; Özgen, Gökhan Osman; Department of Mechanical Engineering (2019)
In this study, swing up and stabilization of on/off type of cold gas thruster driven inverted pendulum is accomplished. First, pulse width modulator (PWM) design method is generated to obtain quasi-linear thrust output from on/off type of thruster. Than, single axis angle controller is designed. Designed angle controller and PWM scheme are tested and verified on single axis angle control test setup. Finally, an other freedom is attached to single axis test setup and rotary inverted pendulum (Furuta Pendulum...
Implementation and assessment of k-omega-gamma transition model for turbulent flows
Karabay, Sami; Baran, Özgür Uğraş; Department of Mechanical Engineering (2022-5-09)
The transition from laminar flow to turbulence is challenging to model in CFD. Due to the complex nature of transition, it is neglected in CFD codes usually by assuming the flow is fully turbulent. However, this results in missing the fundamental characteristics of the flow and inaccurate predictions of the flow field. Although there are several transition models, most of them cannot be used in CFD simulations due to practical issues or low accuracy. Yet, some of these models are promising and candidates to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. H. Tuncer and M. Ç. Kaya, “Optimization of flapping airfoils for maximum thrust and propulsive efficiency,”
AIAA JOURNAL
, pp. 2329–2336, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/29913.