Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Variational iteration method for Sturm-Liouville differential equations
Date
2009-07-01
Author
ALTINTAN, DERYA
Uğur, Ömür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
209
views
0
downloads
Cite This
In this article, He's variational iteration method is applied to linear Sturm-Liouville eigenvalue and boundary value problems, including the harmonic oscillator. In this method, solutions of the problems are approximated by a set of functions that may include possible constants to be determined from the boundary conditions. By computing variations, the Lagrange multipliers are derived and the generalised expressions of variational iterations are constructed. Numerical results show that the method is simple, however powerful and effective.
Subject Keywords
Variational iteration method
,
Sturm-Liouville equations
,
Eigenvalue problems
,
Boundary value problems
,
Computing variations
,
Lagrange multipliers
URI
https://hdl.handle.net/11511/29958
Journal
COMPUTERS & MATHEMATICS WITH APPLICATIONS
DOI
https://doi.org/10.1016/j.camwa.2009.02.029
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Solution of initial and boundary value problems by the variational iteration method
Altintan, D.; Uğur, Ömür (2014-03-15)
The Variational Iteration Method (VIM) is an iterative method that obtains the approximate solution of differential equations. In this paper, it is proven that whenever the initial approximation satisfies the initial conditions, vim obtains the solution of Initial Value Problems (IVPs) with a single iteration. By using this fact, we propose a new algorithm for Boundary Value Problems (BVPs): linear and nonlinear ones. Main advantage of the present method is that it does not use Green's function, however, it...
The Sturm-Liouville operator on the space of functions with discontinuity conditions
Uğur, Ömür (2006-03-01)
The Sturm-Liouville differential operators defined on the space of discontinuous functions, where the moments of discontinuity of the functions are interior points of the interval and the discontinuity conditions are linear have been studied. Auxiliary results concerning the Green's formula, boundary value, and eigenvalue problems for impulsive differential equations are emphasized.
A Rayleigh–Ritz Method for Numerical Solutions of Linear Fredholm Integral Equations of the Second Kind
Kaya, Ruşen; Taşeli, Hasan (2022-01-01)
A Rayleigh–Ritz Method is suggested for solving linear Fredholm integral equations of the second kind numerically in a desired accuracy. To test the performance of the present approach, the classical one-dimensional Schrödinger equation -y″(x)+v(x)y(x)=λy(x),x∈(-∞,∞) has been converted into an integral equation. For a regular problem, the unbounded interval is truncated to x∈ [ - ℓ, ℓ] , where ℓ is regarded as a boundary parameter. Then, the resulting integral equation has been solved and the results are co...
Boundary value problems for higher order linear impulsive differential equations
Uğur, Ömür; Akhmet, Marat (2006-07-01)
In this paper higher order linear impulsive differential equations with fixed moments of impulses subject to linear boundary conditions are studied. Green's formula is defined for piecewise differentiable functions. Properties of Green's functions for higher order impulsive boundary value problems are introduced. An appropriate example of the Green's function for a boundary value problem is provided. Furthermore, eigenvalue problems and basic properties of eigensolutions are considered. (c) 2006 Elsevier In...
FINITE DIFFERENCE APPROXIMATIONS OF VARIOUS STEKLOV EIGENVALUE PROBLEMS
ÖZALP, MÜCAHİT; Bozkaya, Canan; Türk, Önder; Department of Mathematics (2022-8-26)
In this thesis, the finite difference method (FDM) is employed to numerically solve differently defined Steklov eigenvalue problems (EVPs) that are characterized by the existence of a spectral parameter on the whole or a part of the domain boundary. The FDM approximation of the Laplace EVP is also considered due to the fact that the defining differential operator in a Steklov EVP is the Laplace operator. The fundamentals of FDM are covered and their applications on some BVPs involving Laplace operator are d...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. ALTINTAN and Ö. Uğur, “Variational iteration method for Sturm-Liouville differential equations,”
COMPUTERS & MATHEMATICS WITH APPLICATIONS
, pp. 322–328, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/29958.