Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes

Welch, KT
Virga, KG
Whittemore, NA
Özen, Can
Wright, E
Brown, CL
Lee, RE
Serpersu, EH
Chemical modification and inactivation of aminoglycosides by many different enzymes expressed in pathogenic bacteria are the main mechanisms of bacterial resistance to these antibiotics. In this work, we designed inhibitors that contain the 1,3-diamine pharmacophore shared by all aminoglycoside antibiotics that contain the 2-deoxystreptamine ring. A discovery library of molecules was prepared by attaching different side chains to both sides of the 1,3-diamine motif. Several of these diamines showed inhibitory activity toward two or three different representative aminoglycoside-modifying enzymes (AGMEs). These studies yielded the first non-carbohydrate inhibitor N-cyclohexyl-N'-(3-dimethylamino-propyl)-propane-1,3-diamine (Compound G,H) that is competitive with respect to the aminoglycoside binding to the enzyme aminoglycoside-2 ''-nucleotidyltransferase-la (ANT(2 '')). Another diamine molecule N-[2-(3,4-dimethoxyphenyl)-ethyl]-N'-(3-dimethylamino-propyl)-propane-1,3-diamine (Compound H,I) was shown to be a competitive inhibitor of two separate enzymes (aminoglycoside-3'-phosphotransferase-IIIa (APH(3')) and ANT(2 '')) with respect to metal-ATP. Thermodynamic and structural-binding properties of the complexes of APH(3') with substrates and inhibitor were shown to be similar to each other, as determined by isothermal titration calorimetry and NMR spectroscopy.


Studies of enzymes that cause resistance to aminoglycosides antibiotics.
Serpersu, Engin H; Özen, Can; Wright, Edward (2008-01-01)
Aminoglycoside antibiotics are highly potent, wide-spectrum bactericidals (1, 2). Bacterial resistance to aminoglycosides, however, is a major problem in the clinical use of aminoglycosides. Enzymatic modification of aminoglycosides is the most frequent resistance mode among several resistance mechanisms employed by resistant pathogens (1,3). Three families of aminoglycoside modifying enzymes, O-phosphotransferases, N-acetyltransferases, and N-nucleotidyltransferases, are known to have more than 50 enzymes ...
Expression and activity analyses of industrially important extracellular enzymes produced by a bacilysin knock-out mutant of Bacillus Subtilis
Aytekin, Samet; Özcengiz, Gülay; Okay, Sezer; Department of Molecular Biology and Genetics (2018)
Bacilysin, the smallest peptide antibiotic known to date, is produced non-ribosomally by Bacillus subtilis by the collective actions of seven proteins transcribed from bacABCDEF operon and bacG gene. Bacilysin is a two-amino acid peptide composed of L-alanine and a modified amino acid, L-anticapsin. Bacilysin biosynthesis was shown to be strongly regulated by quorum sensing through the actions of global regulator proteins including Spo0K, Spo0H, Spo0A, ComQ/ComX, ComP/ComA as well as several Phr proteins, O...
Investigation of cytocidal effect of K5 type yeast killer protein on sensitive microbial cells
Sertkaya, Abdullah; İzgü, Kadri Fatih; Department of Biology (2005)
Some yeasts secrete polypeptide toxins, which are lethal to other sensitive yeast cells, gram-positive pathogenic bacteria and pathogenic fungi. Therefore these are designated as killer toxins. Killer toxins are suggested as potent antimicrobial agents especially for the protection of fermentation process against contaminating yeasts, biological control of undesirable yeasts in the preservation of foods. Moreover they are promising antimicrobial agents in the medical field; due to immune system suppressing ...
Conjugative transfer of antibiotic resistance genes from salmonella enterica serovar infantis to escherichia coli
Cesur, Aylin; Soyer, Yeşim; Department of Food Engineering (2018)
The usage and misusage of antibiotics in poultry, food-producing animals and human diseases have led to transmission of conjugative plasmids carrying antibiotic resistance genes from one microorganism to another, especially to the pathogenic bacteria. Multi-drug resistant Salmonella enterica serovar Infantis, an emerging serotype in poultry, has been spreading all around the world in a decade. Moreover, commensal microorganisms such as commensal Escherichia coli in the gut microbiota, functioning as a reser...
Impact of UV treatment for the removal of bacterial genes during wastewater treatment
Bulut, Taliye; İçgen, Bülent (null; 2018-06-23)
Wastewater treatment plants (WWTPs) are considered as important hotspots for the spread of the antibiotic resistance genes (ARGs). The dissemination of ARGs is one of the most significant threat to public health. This also causes a danger for water quality in surface waters and groundwater. These waters can easily be included in human life by their use in places such as agriculture, livestock and drinking waters. The bacterial gene is important to analyze the quantity of the total bacterial load and to norm...
Citation Formats
K. Welch et al., “Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes,” BIOORGANIC & MEDICINAL CHEMISTRY, pp. 6252–6263, 2005, Accessed: 00, 2020. [Online]. Available: