Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation and characterization of ni-nitrilotriacetic acid bearing Poly(Methacrylic acid) coated superparamagnetic magnetite nanoparticles
Date
2008-02-01
Author
TURAL, Bilsen
KAYA, Murat
Özkan, Necati
Volkan, Mürvet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
293
views
0
downloads
Cite This
Stable superparamagnetic magnetite (Fe3O4) nanoparticles were synthesized via co-precipitation in the presence of poly(methacrylic acid) (PMAA) in aqueous solution. The polymer coated Fe3O4 nanoparticles were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thermal analysis, and vibrating sample magnetometry (VSM) techniques. These measurements reveal the presence of magnetite nanoparticles with a size of approximately 8 nm inside the PMAA matrix. The magnetization value of these superparamagnetic nanoparticles at room temperarure and 7 T was measured as about 40 emu/g. PMAA-coated Fe3O4 nanoparticles were further assembled with Ni-chelate through a reaction between a primary amine-bearing NTA (nitrilotriacetic acid) ligand and carboxy-functional groups of PMAA. NTA-PMAA-coated magnetite nanoparticles were then loaded with nickel ions and characterized using FTIR. The average amount of binded Ni on the surface of the NTA-modified PMAA coated Fe3O4 was calculated as 1.65 +/- 0.3 x 10(-6) mol nickel(II) ions per g of the magnetic particles from the inductively coupled plasma optical emission spectroscopy (ICP-OES) measurements.
Subject Keywords
Magnetite
,
Superparamagnetic
,
Nanoparticles
,
Surface modification
,
Immobilization
,
PMAA coating
,
Metal chelator
,
Ni-NTA
URI
https://hdl.handle.net/11511/30053
Journal
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
DOI
https://doi.org/10.1166/jnn.2008.b270
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Synthesis and Characterization of Surface Modified Fullerene
Kanbur, Yasin; Kucukyavuz, Zuhal (2012-01-01)
Fullerenes were chemically functionalized by using sulphuric acid and nitric acid. The functionalization was done with two different acid ratio. The functionalized nanotubes were characterized with Fourier transform infrared spectroscopy and X-ray photonelectron spectroscopy (XPS), elemental analysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Sulfonation of fullerene increased the electrical conductivity of fullerenes up to 0.027 S/cm. TEM micrographs showed that sulfon...
Preparation and microstructure of sol-gel derived silver-doped silica
Akkopru, Betul; Durucan, Caner (2007-08-01)
Silver-doped silica was prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS, Si(OC2H5)(4)) in the presence of a silver nitrate (AgNO3) solution by two different synthesis methods. In the first synthesis route, sol-gel mixtures were prepared using an acid catalyst. In the second synthesis route, silver-doped silica gels were formed by two-step acid/base catalysis. For the same concentration of silver dopant [AgNO3]/[TEOS] = 0.015 acid-catalyzed sol-gel formed a microporous silica with a...
Synthesis and characterization of poly(allyl methacrylate) obtained by gamma-radiation
Vardareli, Tugba K.; Usanmaz, Ali (Wiley, 2007-04-15)
Allyl methacrylate was polymerized by gamma-radiation under vacuum in solution and atom transfer radical polymerization (ATRP) methods and also in the presence of atmospheric oxygen in bulk. The kinetic curve is S-type with a longer induction period, because of the presence of oxygen, in bulk polymerization. The curve for the solution polymerization is almost linear with a short induction period. The rate started to decrease after about 60% conversion and reached to a limiting conversion of 100%. The polyme...
Preparation of Chitosan-Coated Magnetite Nanoparticles and Application for Immobilization of Laccase
Kalkan, Nuzhet Ayca; AKSOY, SERPİL; Aksoy, Eda Ayse; Hasırcı, Nesrin (2012-01-15)
In this study, immobilization of laccase (L) enzyme on magnetite (Fe(3)O(4)) nanoparticles was achieved, so that the immobilized enzyme could be used repeatedly. For this purpose, Fe(3)O(4) nanoparticles were coated and functionalized with chitosan (CS) and laccase from Trametes versicolor was immobilized onto chitosan-coated magnetic nanoparticles (Fe(3)O(4)-CS) by adsorption or covalent binding after activating the hydroxyl groups of chitosan with carbodiimide (EDAC) or cyanuric chloride (CC). For chitosa...
Synthesis of Photocatalytic Titanium Dioxide Nanopowders Using Different Acid Catalysers
Mohammed, Ahmed Hafedh Mohammed; Park, Jongee; Öztürk, Abdullah (2018-07-17)
Photocatalytic titanium dioxide (TiO2) nanoparticles were synthesized via acid assisted sol-gel process. The effects of different acids namely; acetic acid, hydrochloric acid, and nitric acid on the formation of TiO2 nanoparticles and their photocatalytic properties were investigated. XRD, SEM, and UV-Vis spectrophotometer analyses were performed to examine the physical and chemical characteristics of the nano powders. The results showed that only anatase phase of TiO2nanoparticleswith different crystallite...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. TURAL, M. KAYA, N. Özkan, and M. Volkan, “Preparation and characterization of ni-nitrilotriacetic acid bearing Poly(Methacrylic acid) coated superparamagnetic magnetite nanoparticles,”
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
, pp. 695–701, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30053.