Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants
Download
10.3390:jcm9020342.pdf
Date
2020-02-01
Author
Piszczek, Piotr
Radtke, Aleksandra
Ehlert, Michalina
Jedrzejewski, Tomasz
Sznarkowska, Alicja
Sadowska, Beata
Bartmanski, Michal
Erdoğan, Yaşar Kemal
Ercan, Batur
Jedrzejczyk, Waldemar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
272
downloads
Cite This
An increasing interest in the fabrication of implants made of titanium and its alloys results from their capacity to be integrated into the bone system. This integration is facilitated by different modifications of the implant surface. Here, we assessed the bioactivity of amorphous titania nanoporous and nanotubular coatings (TNTs), produced by electrochemical oxidation of Ti6Al4V orthopedic implants' surface. The chemical composition and microstructure of TNT layers was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). To increase their antimicrobial activity, TNT coatings were enriched with silver nanoparticles (AgNPs) with the chemical vapor deposition (CVD) method and tested against various bacterial and fungal strains for their ability to form a biofilm. The biointegrity and anti-inflammatory properties of these layers were assessed with the use of fibroblast, osteoblast, and macrophage cell lines. To assess and exclude potential genotoxicity issues of the fabricated systems, a mutation reversal test was performed (Ames Assay MPF, OECD TG 471), showing that none of the TNT coatings released mutagenic substances in long-term incubation experiments. The thorough analysis performed in this study indicates that the TNT5 and TNT5/AgNPs coatings (TNT5-the layer obtained upon applying a 5 V potential) present the most suitable physicochemical and biological properties for their potential use in the fabrication of implants for orthopedics. For this reason, their mechanical properties were measured to obtain full system characteristics.
Subject Keywords
Ti6Al4V implants
,
Anodization process
,
XPS
,
Antimicrobial activity
,
Genotoxicity assessment
,
Anti-inflammatory properties
,
Mechanical properties
URI
https://hdl.handle.net/11511/30137
Journal
JOURNAL OF CLINICAL MEDICINE
DOI
https://doi.org/10.3390/jcm9020342
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Review of magnesium-based biomaterials and their applications
Sezer, Nurettin; Evis, Zafer; Kayhan, Said Murat; Tahmasebifar, Aydin; Koc, Muammer (2018-03-01)
In biomedical applications, the conventionally used metallic materials, including stainless steel, Co-based alloys and Ti alloys, often times exhibit unsatisfactory results such as stress shielding and metal ion releases. Secondary surgical operation(s) usually become inevitable to prevent long term exposure of body with the toxic implant contents. The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals, alloys, and metallic glasses. As suc...
Evaluating the effects of size and chirality on the mechanical properties of single-walled carbon nanotubes through equivalent-continuum modelling
Zuberi, M. Jibran S.; Esat, Volkan (2016-10-01)
Due to numerous difficulties associated with the experimental investigation of the single-walled carbon nanotubes (SWNTs), computational modelling is considered to be a powerful alternative in order to determine their mechanical properties. In this study, a novel three-dimensional finite element model incorporating a beam element with circular cross section is developed based on equivalent-continuum mechanics approach. The beam elements are used as the replacement of C-C chemical bonds in modelling SWNTs. F...
Enhancing biocompatibility of tantalum via anodization for orthopedic applications
Uslu, Ece; Ercan, Batur (null; 2018-12-06)
Tantalum and its alloys have been investigated as the next generation of orthopedic implant materials in the last decade. Being a valve metal, tantalum forms a naturally occurring stable oxide layer approximately 3-5 nm on its surface at ambient conditions and this layer both prevents heavy ion release from the metal and provides a natural barrier for implant corrosion. In fact, due to its chemically inert nature, tantalum has the highest corrosion resistance of all metals used in orthopedic applications. T...
Mechanical, electrical and thermal properties of carbon fiber reinforced poly(dimethylsiloxane)/polypyrrole composites
Cakmak, G; Kucukyavuz, Z; Kucukyavuz, S; Cakmak, H (2004-01-01)
Conductive and flexible carbon fiber (CF) reinforced polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical synthesis was performed at + 1.1 V using p-toluenesulfonic acid as supporting electrolyte and water as solvent. Composites were characterized by thermal gravimetric analysis, scanning electron microscopy (SEM), conductivity measurements and mechanical tests. Conductivities of composites were observed in the range of 2.2-4 S/cm. SEM studies show tha...
Impact damage sensing of multiscale composites through epoxy matrix containing carbon nanotubes
Arronche, Luciana; La Saponara, Valeria; Yesil, Sertan; Bayram, Göknur (2013-06-05)
Carbon nanotubes are used to provide increased electrical conductivity for polymer matrix materials, thus offering a method to monitor the structure's health. This work investigates the effect of impact damage on the electrical properties of multiscale composite samples, prepared with woven fiberglass reinforcement and epoxy resin modified with as-received multi-walled carbon nanotubes (MWCNTs). Moreover, this study addresses potential bias from manufacturing, and investigates the effectiveness of resistanc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Piszczek et al., “Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants,”
JOURNAL OF CLINICAL MEDICINE
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30137.