Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Impact damage sensing of multiscale composites through epoxy matrix containing carbon nanotubes
Date
2013-06-05
Author
Arronche, Luciana
La Saponara, Valeria
Yesil, Sertan
Bayram, Göknur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
Carbon nanotubes are used to provide increased electrical conductivity for polymer matrix materials, thus offering a method to monitor the structure's health. This work investigates the effect of impact damage on the electrical properties of multiscale composite samples, prepared with woven fiberglass reinforcement and epoxy resin modified with as-received multi-walled carbon nanotubes (MWCNTs). Moreover, this study addresses potential bias from manufacturing, and investigates the effectiveness of resistance measurements using two- and four-point probe methods. Transmission electron microscopy and static tensile tests results were used to evaluate, respectively, the dispersion of MWCNTs in the epoxy resin and the influence of the incorporation of these nanoparticles on the static tensile properties of the matrix, and interpret results from the resistance measurements on impacted specimens. In this study, the four-point probe method is shown to be much more repeatable and reliable than the two-point probe method. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Subject Keywords
Composites
,
Mechanical properties
,
Sensors and actuators
,
Conducting polymers
URI
https://hdl.handle.net/11511/36668
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.38448
Collections
Department of Chemical Engineering, Article