Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release
Date
2001-01-01
Author
Turesin, F
Gursel, I
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Various random copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) and 3-hydroxybutyrate and l-hydroxybutyrate P(3HB-4HB) were used in the construction of biodegradable, implantable rods for the local delivery of antibiotics (Sulperazone(R) and Duocid(R)) in chronic osteomyelitis therapy. Drug loading, type of active agent, and additional coating of the implant surface all have significant contributions to the in vitro release profile. The rate and duration of Sulperaxone(R) release from P(3HB-4HB) rods were controlled by the polymer/drug ratio (drug loading). The rate of drug dissolution was substantially higher than that of polymer degradation. Therefore, the release phenomenon was more dependent on drug dissolution rather than on polymer degradation or diffusion. Coating rods with the same type of polymer substantially reduced the initial burst effect observed with the uncoated rods, and significantly decreased the release rate so that the release kinetics became almost zero order. Antibiotic release from coated rods was sustained for over a period of 2 weeks at a constant rate, whereas uncoated rods released their contents in less than a week. Impregnation of Duocid(R) into the hydrophobic polymer matrix yielded a rod with a smoother surface topography. The release from these rods was significantly higher than for rods loaded with Sulperazone(R) and a zero order release could not be obtained with these samples.
Subject Keywords
Polyhydroxyalkanoates
,
Biodegradable implants
,
Osteomyelitis
,
Controlled drug delivery
,
Antibiotics
URI
https://hdl.handle.net/11511/30168
Journal
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
DOI
https://doi.org/10.1163/156856201750180924
Collections
Graduate School of Natural and Applied Sciences, Article