Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release

Turesin, F
Gursel, I
Hasırcı, Vasıf Nejat
Various random copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) and 3-hydroxybutyrate and l-hydroxybutyrate P(3HB-4HB) were used in the construction of biodegradable, implantable rods for the local delivery of antibiotics (Sulperazone(R) and Duocid(R)) in chronic osteomyelitis therapy. Drug loading, type of active agent, and additional coating of the implant surface all have significant contributions to the in vitro release profile. The rate and duration of Sulperaxone(R) release from P(3HB-4HB) rods were controlled by the polymer/drug ratio (drug loading). The rate of drug dissolution was substantially higher than that of polymer degradation. Therefore, the release phenomenon was more dependent on drug dissolution rather than on polymer degradation or diffusion. Coating rods with the same type of polymer substantially reduced the initial burst effect observed with the uncoated rods, and significantly decreased the release rate so that the release kinetics became almost zero order. Antibiotic release from coated rods was sustained for over a period of 2 weeks at a constant rate, whereas uncoated rods released their contents in less than a week. Impregnation of Duocid(R) into the hydrophobic polymer matrix yielded a rod with a smoother surface topography. The release from these rods was significantly higher than for rods loaded with Sulperazone(R) and a zero order release could not be obtained with these samples.


In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis
Gursel, I; Korkusuz, F; Turesin, F; Alaeddinoglu, NG; Hasırcı, Vasıf Nejat (2001-01-01)
In this study the construction and in vivo testing of antibiotic-loaded polyhydroxyalkanoate rods were planned for use in the treatment of implant-related osteomyelitis. The rods were constructed of poly(3-hydroxybutyrare-co-3-hydroxyvalerate) and poly(3hydroxybutyrate-co-4-hydroxybutyrate), carrying 50% (w/w) Sulperazone(R) or Duocid(R). They were implanted in rabbit tibia in which implant-related osteomyelitis (IRO) had been induced with Staphylococcus aureus. The effectiveness of the antibiotics in the t...
Characterization and Evaluation of Triamcinolone, Raloxifene, and Their Dual-Loaded Microspheres as Prospective Local Treatment System in Rheumatic Rat Joints
Ocal, Yigit; Kurum, Baris; Karahan, Siyami; Tezcaner, Ayşen; Ozen, Seza; Keskin, Dilek (Elsevier BV, 2014-8)
In this study, injectable microspheres were developed for the local treatment of joint degeneration in rheumatoid arthritis (RA). Microspheres loaded with triamcinolone (TA), a corticosteroid drug, and/or raloxifene (Ral), a cartilage regenerative drug, were prepared with a biodegradable and biocompatible polymer, polycaprolactone (PCL). Microspheres were optimized for particle size, structural properties, drug release, and loading properties. In vitro release of Ral was very slow because of the low solubil...
Bioactive agents carrying quantum dot labeled liposomes
Büyüksungur, Arda; Hasırcı, Vasıf Nejat; Padeste, Celestino; Department of Biotechnology (2013)
Among the many possible applications of nanotechnology in medicine, the use of various nanomaterials as delivery systems for pharmacologically active agents, drugs and nucleic acids (DNA, siRNA), and imaging agents is gaining increased attention. Liposomes are particularly important for these drug delivery systems because of their advantages such as their ability to carry hydrophilic and hydrophobic drugs, their being of biological origin and short life spans. Quantum Dots (QDs) are nano-scale, semiconducti...
Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity
Roy, Anupam; Bulut, Onur; Some, Sudip; Mandal, Amit Kumar; Yilmaz, M. Deniz (Royal Society of Chemistry (RSC), 2019-01-23)
Since discovery of the first antibiotic drug, penicillin, in 1928, a variety of antibiotic and antimicrobial agents have been developed and used for both human therapy and industrial applications. However, excess and uncontrolled use of antibiotic agents has caused a significant growth in the number of drug resistant pathogens. Novel therapeutic approaches replacing the inefficient antibiotics are in high demand to overcome increasing microbial multidrug resistance. In the recent years, ongoing research has...
Surface functionalization of SBA-15 particles for amoxicillin delivery
Sevimli, Filiz; Yılmaz, Ayşen (2012-08-01)
The hydrothermally synthesized SBA-15 particles were surface functionalized by post-grafting synthesis method with (3-aminopropyl) triethoxy silane, mercaptopropyl trimethoxy silane and triethoxy methyl silane in order to be used as carrier materials for drug delivery. Amoxicillin was used as a model drug. The adsorption and release properties of calcined and organic-functionalized mesoporous silicas containing terminal primary amine, organothiol and methyl groups toward amoxicillin have been investigated. ...
Citation Formats
F. Turesin, I. Gursel, and V. N. Hasırcı, “Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release,” JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, pp. 195–207, 2001, Accessed: 00, 2020. [Online]. Available: