Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity

Download
2019-01-23
Roy, Anupam
Bulut, Onur
Some, Sudip
Mandal, Amit Kumar
Yilmaz, M. Deniz
Since discovery of the first antibiotic drug, penicillin, in 1928, a variety of antibiotic and antimicrobial agents have been developed and used for both human therapy and industrial applications. However, excess and uncontrolled use of antibiotic agents has caused a significant growth in the number of drug resistant pathogens. Novel therapeutic approaches replacing the inefficient antibiotics are in high demand to overcome increasing microbial multidrug resistance. In the recent years, ongoing research has focused on development of nano-scale objects as efficient antimicrobial therapies. Among the various nanoparticles, silver nanoparticles have gained much attention due to their unique antimicrobial properties. However, concerns about the synthesis of these materials such as use of precursor chemicals and toxic solvents, and generation of toxic byproducts have led to a new alternative approach, green synthesis. This eco-friendly technique incorporates use of biological agents, plants or microbial agents as reducing and capping agents. Silver nanoparticles synthesized by green chemistry offer a novel and potential alternative to chemically synthesized nanoparticles. In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.
RSC ADVANCES

Suggestions

Utilization of pretreated molasses for serine alkaline protease production with recombinant Bacillus species
Calik, G; Pehlivan, N; Kalender, N; Ozdamar, TH; Çalık, Pınar (Informa UK Limited, 2003-05-01)
Recombinant Bacillus amyloliquefaciens, Bacillus cereus, Bacillus subtilis , and Bacillus licheniformis were used for the production of serine alkaline protease (SAP) utilizing chemically and/or physically pretreated molasses. The highest enzyme activity was obtained with r- Bacillus subtilis , with the complex medium involving physically treated molasses having 20 kg m(-3) initial sucrose concentration in small-scale, agitation- and heating rate-controlled bioreactors at t=63 h. Effects of oxygen transfer ...
Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Tuerker, Lemi; Eroğlu, İnci; ERKEY, CAN (Informa UK Limited, 2009-01-01)
In this study, supercritical carbon dioxide (scCO(2)) deposition was used to prepare vulcan-supported Pt (Pt/Vulcan) electrocatalysts for proton exchange membrane fuel cells (PEMFCs), and the effects of process variables on the properties of the electrocatalysts were investigated. The two different methods used to reduce the organometallic precursor were thermal reduction in nitrogen at atmospheric pressure and thermal reduction in scCO(2). In the former method, the maximum Pt loading achieved was 9%, and t...
Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films
ERKAN, Arcan; BAKIR, Ufuk; Karakaş, Gürkan (Elsevier BV, 2006-12-15)
The photocatalytic antimicrobial activity over TiO2, SnO2 and their Pd doped thin film samples were determined against Escherichia coli, Staphylococcus aereus, Saccharomyces cerevisiae and Aspergilus niger spores. Higher antimicrobial activity was observed with TiO2 than SnO2 thin films and, Pd addition contributes to an increase in the activity of both semiconductor oxides. The highest microbial inactivation was achieved with 1% PdO/TiO2 against E. coli with a 98% decrease in survival after 2 h illuminatio...
Development of a synthetic strategy for Water soluble tripodal receptors: Two novel fluorescent receptors for highly selective and sensitive detections of Fe3+ and Cu2+ ions and biological evaluation
USLU, AYLİN; Ozcan, Elif; TÜMAY, SÜREYYA OĞUZ; Kazan, Hasan Huseyin; YEŞİLOT, SERKAN (Elsevier BV, 2020-04-01)
A general synthetic strategy is developed to synthesize water soluble receptors by employing tripodal system based on a cyclotriphosphaze platform. The developed model is successfully synthesized and characterized by using elemental analysis, FT-IR, MALDI-TOF, H-1 NMR, C-13 NMR and P-31 NMR techniques. The fluorescence sensing performance of prepared water soluble tripodal systems were evaluated by UV/Vis and fluorescence spectroscopies. According to obtained results, two novel water-soluble sensing platfor...
Electrospun amino-functionalized PDMS as a novel SPME sorbent for the speciation of inorganic and organometallic arsenic species
Boyacı, Ezel; Cagir, Ali; Demir, Mustafa M.; Eroglu, Ahmet E. (Royal Society of Chemistry (RSC), 2013-01-01)
Sol-gel based amine-functionalized SPME fibers (PDMS-weak anion exchanger) were prepared and used for direct mode extraction of dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)) from aqueous solutions followed by HPLC-ICPMS determination. Two different methods of coating were employed: (i) electrospinning and (ii) dip coating. Electrospinning was used for the first time for preparation of sol-gel based SPME fibers and was found to be superior in terms of extracted amount of arse...
Citation Formats
A. Roy, O. Bulut, S. Some, A. K. Mandal, and M. D. Yilmaz, “Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity,” RSC ADVANCES, pp. 2673–2702, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68190.