Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pyrolysis mass spectrometric analysis of poly(pyrrole-g-(2-(N-pyrrolyl)ethylvinylether)
Date
2003-01-01
Author
Uyar, Tamer
Toppare, Levent Kamil
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
0
downloads
Cite This
Preparation of block and graft copolymers of conducting polymers with insulating polymers with good mechanical properties have been attempted in order to improve their mechanical properties. Yet, complete structural characterization is still limited due to the insolubility of the polymer samples. In this work, direct insertion pyrolysis mass spectrometry technique had been applied for structural and thermal characterization of a polymer prepared by electrochemical polymerization of pyrrole on a poly(2-(N-pyrrolyl)ethylvinylether) (PPEVE) precoated anode. For this purpose, pyrolysis analyses of polypyrrole (PPY), PPEVE and polypyrrole/poly(2-(N-pyrrolyl)ethylvinylether) graft copolymer (PPY/PPEVE), were performed. The extent of dissociation during the ionization in the mass spectrometer was investigated by repeating the experiments at different electron energies. Single ion current temperature profiles of characteristic fragments evolved during the pyrolysis of each component of the copolymer was compared with those of the corresponding fragments evolved from the copolymer, PPY/PPEVE. Experimental results confirmed that the growth of pyrrole takes place through the pyrrole moieties of PPEVE. The observed increase in the relative intensities of the monomer, and low molecular weight oligomer peaks of pyrrole in the pyrolysis mass spectra of the copolymer, was attributed to a decrease in the extent of network structure, which is common for the electrochemically synthesized PPYs
Subject Keywords
Pyrolysis mass spectrometry
,
Polypyrrole
,
Graft copolymers
URI
https://hdl.handle.net/11511/30386
Journal
Journal of Analytical and Applied Pyrolysis
DOI
https://doi.org/10.1016/s0165-2370(03)00008-1
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Pyrolysis mass spectrometry analyses of poly(3-methylthiophene)
Gozet, Tuba; Hacaloğlu, Jale (2005-01-01)
In this work, pyrolysis mass spectrometry techniques were applied to investigate the thermal and the structural characteristics of electrochemically prepared BF4- doped poly(3-methylthiophene) (PMTh) and to explore the effect of methyl substitution on thermal and structural characteristics of polythiophene (PTh). It has been determined that thermal degradation of BF4- doped PMTh films occurs in two steps as in the case of polythiophene. The first step was assigned to the loss of the dopant, and the second s...
Investigation of copolymers of thiophene-functionalized polystyrene with pyrrole by pyrolysis mass spectrometry
Papila, Ozge; Toppare, Levent Kamil; Hacaloğlu, Jale (2006-06-01)
The thermal and structural characterization of electrochemically synthesized thiophene-functionalized polystyrene and pyrrole (PS/PPy) and their copolymers were investigated by direct pyrolysis mass spectrometry. The pyrolysis data confirmed the growth of polypyrrole onto the pendant thiophene moiety of polystyrene. It is determined that the electrolytic film has different properties from the mechanical mixture and the related homopolymers.
Direct pyrolysis mass spectrometry studies on thermal degradation characteristics of poly(phenylene vinylene) with well-defined PSt side chains
Nur, Y.; Çolak, Demet; Cianga, I.; Yagci, Y.; Hacaloğlu, Jale (2008-10-01)
Thermal degradation characteristics of a new macromonomer polystyrene with central 4,4'-dicarbaldehyde terphenyl moieties and poly(phenylene vinylene) with well-defined polystyrene (PPV/PSt) as lateral substituents were investigated via direct pyrolysis mass spectrometry. A slight increase in thermal stability of PSt was detected for (PPV/PSt) and attributed to higher thermal stability of PPV backbone. It was almost impossible to differentiate products due to the decomposition of PPV backbone from those pro...
Pyrolysis of of poly(methy methacrylate) copolymers
Ozlem-Gundogdu, Suriye; Gurel, Evren Aslan; Hacaloğlu, Jale (2015-05-01)
In this work, thermal degradation of copolymers of poly(methy methacrylate) namely, poly(methyl methacrylate-co-n-butyl acrylate), P(MMA-co-nBu), poly(methyl methacrylate-co-n-benzyl methacrylate) P(MMA-co-BzMA, and poly(methyl methacrylate-co-isobornyl acrylate), P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. It was determined that whether an available gamma-H with respect to the carbonyl groups is present or not determines the thermal degradation mechanisms of polyacrylates and po...
A conducting composite of polythiophene: Synthesis and characterization
Vatansever, Fatma; Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1996-01-01)
Conducting polymer composites of polythiophene, using a polyamide as the insulating matrix, were prepared via electrochemical methods. The characterization of the composite was done by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and pyrolysis studies. The conductivities were measured by a four-probe technique. The cited methods revealed that the composites have properties different from those of simple mechanical mixtures of the two...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Uyar, L. K. Toppare, and J. Hacaloğlu, “Pyrolysis mass spectrometric analysis of poly(pyrrole-g-(2-(N-pyrrolyl)ethylvinylether),”
Journal of Analytical and Applied Pyrolysis
, pp. 15–24, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30386.