Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Activation behavior of an AB(2) type metal hydride alloy for NiMH batteries
Date
2016-06-22
Author
Tan, Semra
Shen, Yang
Sahin, Ezgi Onur
Noreus, Dag
Öztürk, Tayfur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
65
views
0
downloads
Cite This
Activation behavior of an AB(2), namely (Ti0.36Zr0.64) (V0.15Ni0.58Mn0.20Cr0.07)(2) Laves phase alloy, was investigated with regards to; particle size, ball milling and hot alkaline treatments. Galvanostatic cycling in open cells showed that an untreated alloy initially had almost no capacity, but reached a value of 220 mAh/g after 14 cycles. Experiments with different particle sizes showed that coarse particles activate faster yielding an improved capacity. In terms of activation more pronounced effect was obtained with boiling the alloy powder in a hot KOH solution. A capacity in excess of 300 mAh/g is reached in the first cycle after a 20 min treatment. The capacity was highest after 80 min, yielding a value of 390 mAh/g well above that expected from the gas-phase storage in the alloy. This was attributed to the formation of rough surface in the powder, which may stabilize hydrogen bubbles allowing pressures above 1 atm to be reached locally in the surface. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Metal hydride
,
Laves phase
,
NiMH batteries
,
Activation
,
Particle size
,
Hot alkaline treatment
,
Electrochemical properties
,
Alkaline-solution
,
Hydrogen storage
,
Electrodes
URI
https://hdl.handle.net/11511/30441
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2016.03.196
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Reaction kinetics of calcium chloride - ammonia reactive system and theoretical simulation of heat and mass transfer in porous slab pellets
Karakaş Helvacı, Zeynep; Uludağ, Yusuf; Karakaş, Gürkan; Department of Chemical Engineering (2023-1-24)
The reactive systems between ammoniated CaCl2 and NH3 were investigated in terms of heat and mass transport phenomena coupled with reaction kinetics. The reversible reaction rate based on the Langmuir-Hinshelwood model was suggested to express the net reaction rate, including both the adsorption and desorption terms. Experiments at three temperatures were conducted to evaluate the kinetic parameters, pre-exponential factors, and activation energies. The parameters were evaluated by Non-Linear Regression (NL...
Electrochemical Behavior of Hydrazine Borane in Methanol Solution
Ozhava, Derya; Önal, Ahmet Muhtar; Özkar, Saim (The Electrochemical Society, 2014-01-01)
Electrochemical behavior of hydrazine borane (HB) was investigated on gold electrode in 0.5 M LiClO4 solution in methanol using cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry. Two irreversible peaks at 164 and 530 mV are attributed to direct electro-oxidation of HB on gold electrode in methanol. Both EIS results and CV data at different scan rates indicate a diffusion controlled electron transfer reaction. Furthermore, the Tafel slope (b = 0.191 V) and charge transfer...
Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis
Köse, Kadir Özgün; Aydınol, Mehmet Kadri (2022-09-01)
Pinecone-derived activated carbon (AC) and bimetallic transition metal phosphide (TMP) composites were produced and utilized as electrochemical capacitor (EC) electrodes and oxygen evolution reaction (OER) catalysts in this study. The base transition metal (TM) was Ni for all samples, and the secondary TM was one of Fe, Mn and Co. AC serves as a porous structure for double layer formation and active sites for OER catalysis. Bimetallic TMP is utilized due to redox reactions in EC and catalytic activity in OE...
AXIAL DISPERSION OF LIQUID IN MOBILE-BED CONTACTING
Uysal, B.Z; Özilgen, M. (Informa UK Limited, 1989-7)
Axial dispersion of liquid in Mobile-Bed Contacting (MBC) was investigated employing transient-response technique with impulse input of NaCI tracer. Experiments were performed in a 0.195 m ID column. Three different packing diameters (15, 19.5 and 32 mm) and three different static bed heights (0.1, 0.195 and 0.3 m) were used. Gas flow rate was varied between 3.02 and 4.05 kg/m2/s and liquid flow rate from 2.4 to 10.4 kg/m2/s. Transfer function analysis of data yielded that Peclet number was practically ind...
Escape of photoelectrons and Compton-scattered photons from an HPGe detector
Can, Cüneyt (Wiley, 2003-07-01)
The response function of a planar HPGe detector due to escape of photoelectrons and Compton-scattered photons was studied for a point source with 59.5 keV energy. It was shown that both mechanisms, in addition to Ge x-ray escape, leading to partial deposition of energy, could be observed in the same experiment. A Monte Carlo program was used to investigate these components of the response function. The results indicate that although the escape of scattered photons and Ge x-rays are of the same magnitude, th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Tan, Y. Shen, E. O. Sahin, D. Noreus, and T. Öztürk, “Activation behavior of an AB(2) type metal hydride alloy for NiMH batteries,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 9948–9953, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30441.