Nb-Pd-Ti BCC thin films for hydrogen separation

2019-02-15
Piskin, Fatih
Öztürk, Tayfur
An investigation was carried out into Nb-Pd-Ti ternary system to determine possible body-centered cubic (b.c.c.) membranes that can be used for hydrogen separation. A library of thin films was produced covering the greater portion of Nb-Pd-Ti ternary diagram using a combinatorial approach. The library was screened both structurally and in terms of a reactivity index defined as the ratio of the resistivity measured in the films under hydrogen and argon. The study showed that a substantial portion of compositional field stretching from Nb to Ti yield thin films with b.c.c. structure. The evaluation based on the reactivity index showed a narrow region close to Nb corner as possible compositions for separation membranes. The b.c.c. field was also screened with regard to the lattice volume so as to identify regions of acceptable hydrogen solubility. The superposition of two maps; one reactivity index and the other lattice volume yield a field 32 < Nb <41, 27 < Pd <44, 20 < Ti <38 as possible compositions for separation membranes.
JOURNAL OF ALLOYS AND COMPOUNDS

Suggestions

Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti
Olmez, Rabia; Cakmak, Gulhan; Öztürk, Tayfur (2010-11-01)
A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comp...
Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting
Sokollu, Baris; Gulcan, Orhan; Konukseven, Erhan İlhan (2022-12-01)
The aim of this study is to make a comparative assessment of the compression and tensile behavior of two strut -based (body-centered cubic, BCC, and face-centered cubic, FCC) and three triply periodic minimum surfaces (gyroid, primitive, diamond) lattice structures produced by electron beam melting method from Ti6Al4V powder material. Compression and tension tests were performed and compared with finite element analysis results. Moreover, scanning electron microscope analysis for dimensional variation and o...
Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime
DURAP, FEYYAZ; Zahmakiran, Mehmet; Özkar, Saim (2009-09-01)
The simplest amine-borane, considered as solid hydrogen storage material, ammonia-borane (H(3)NBH(3)) can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, we report the preparation of a novel catalyst, water dispersible laurate-stabilized ruthenium(0) nanoclusters from the dimethylamine-borane reduction of ruthenium(III) chloride in sodium laurate solution at room temperature. The ruthenium nanoclusters in average size of 2.6 +/- 1.2 nm were isolated from the solution and well c...
Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (2017-10-01)
Rhodium(0) nanoparticles were in situ formed from the reduction of rhodium(II) octanoate and supported on the surface of nanoalumina yielding Rh(0)/nanoAl(2)O(3) which is highly active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. The kinetics of nanoparticle formation can be followed just by monitoring the volume of hydrogen gas evolved from the methanolysis of ammonia borane. The evaluation of the kinetic data gives valuable insights to the slow, continuous n...
Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (2016-01-01)
Magnetic ferrite nanopowders were coated with polydopamine which is inert against the hydrolysis of ammonia borane. Coating of ferrite powders was achieved by pH-induced self-polymerization of dopamine hydrochloride at room temperature. Palladium(0) nanoparticles supported on polydopamine coated ferrite (Pd-0/PDA-Fe3O4) were prepared by impregnation of palladium(II) ions on the surface of PDA-Fe3O4 followed by their reduction with sodium borohydride in aqueous solution at room temperature. Magnetically isol...
Citation Formats
F. Piskin and T. Öztürk, “Nb-Pd-Ti BCC thin films for hydrogen separation,” JOURNAL OF ALLOYS AND COMPOUNDS, pp. 411–418, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30471.