Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting
Date
2022-12-01
Author
Sokollu, Baris
Gulcan, Orhan
Konukseven, Erhan İlhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
182
views
0
downloads
Cite This
The aim of this study is to make a comparative assessment of the compression and tensile behavior of two strut -based (body-centered cubic, BCC, and face-centered cubic, FCC) and three triply periodic minimum surfaces (gyroid, primitive, diamond) lattice structures produced by electron beam melting method from Ti6Al4V powder material. Compression and tension tests were performed and compared with finite element analysis results. Moreover, scanning electron microscope analysis for dimensional variation and optical microscope analysis for microstructural changes were performed. Gibson-Ashby relations and related coefficients were also calculated. Results showed that gyroid specimens showed the highest (21.7%) and diamond specimens showed the lowest dimensional error (6.5%). Tensile test results showed that the highest and the lowest ultimate tensile strength were observed on diamond (422 MPa) and BCC (192 MPa) specimens, respectively. Compression test results showed that the diamond had the highest yield stress (427 MPa) and first maximum compressive strength (526 MPa). The highest and the lowest energy absorption capabilities were observed on gyroid (180.2 MJ/m3) and BCC (84.2 MJ/m3) topologies, respectively.
Subject Keywords
Compression testing
,
Tensile testing
,
Lattice structure
,
POROUS BIOMATERIALS
,
ENERGY-ABSORPTION
,
DESIGN
,
STRENGTH
,
BONE
,
SLM
URI
https://hdl.handle.net/11511/100867
Journal
ADDITIVE MANUFACTURING
DOI
https://doi.org/10.1016/j.addma.2022.103199
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Dielectric and Thermal Effects on the Optical Properties of Natural Dyes: A Case Study on Solvated Cyanin
Malcıoğlu, Osman Barış; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano (2011-10-05)
The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Descri...
Optical characterization of Ga2SeS layered crystals by transmission, reflection and ellipsometry
IŞIK, MEHMET; Hasanlı, Nızamı (2015-07-10)
Optical properties of Ga2SeS crystals grown by Bridgman method were investigated by transmission, reflection and ellipsometry measurements. Analysis of the transmission and reflection measurements performed in the wavelength range of 400-1100 nm at room temperature indicated the presence of indirect and direct transitions with 2.28 eV and 2.38 eV band gap energies. Ellipsometry measurements were carried out in the 1.2-6.0 eV spectral region to get information about optical constants, real and imaginary part...
Structural properties of indium phosphide nanorods: molecular dynamics simulations
Nayir, Nadire; TAŞCI, EMRE; Erkoç, Şakir (2016-01-01)
We study the structural properties of the indium phosphide nanorods of different thickness in zinc blende and wurtzite phases by performing classical molecular dynamics simulations using an inter-atomic potential. In addition to different temperatures, the nanorods are also investigated under strain and compression. When the stretch is applied, simulations reveal that the sequence of the irreversible structural transformation for the zinc blende nanorods is zinc blende -> rock salt -> wurtzite and the wurtz...
Experimental investigation of particle filtration in compression resin transfer molding of advanced composites
Aydil Dalkıran, Tuğçe; Erdal Erdoğmuş, Merve; Department of Mechanical Engineering (2014)
With the inclusion of particle fillers in advanced continuous fiber reinforced composites, issues such as impregnation with increased viscosity of the injected resin leading to high process pressures and possible nonhomogeneous/directional composite properties due to filtering of filler particles necessitate the study of the relations between processing parameters and the resulting particle distributions. In this study, the particle-resin interaction during compression resin transfer molding (CRTM) and resi...
Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers
Li, C.; Zhang, Y.; Mann, M.; Hiralal, P.; Ünalan, Hüsnü Emrah; Lei, W.; Wang, B. P.; Chu, D. P.; Pribat, D.; Amaratunga, G. A. J.; Milne, W. I. (AIP Publishing, 2010-04-05)
A structure composed of zinc oxide nanowires (ZNWs) grown hydrothermally on an array of vertically aligned carbon nanofibers (CNFs) was fabricated and its field emission properties determined and compared with bare CNF arrays. The combination produced a macroscopic turn-on field of 1.2 V/mu m which was found to be the lowest reported from ZNWs deposited on a two-dimensional substrate and much less than the equivalent CNFs array (5.2 V/mu m). Crucially, field emission was found to be much more stable at high...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Sokollu, O. Gulcan, and E. İ. Konukseven, “Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting,”
ADDITIVE MANUFACTURING
, vol. 60, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100867.