Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting

Sokollu, Baris
Gulcan, Orhan
Konukseven, Erhan İlhan
The aim of this study is to make a comparative assessment of the compression and tensile behavior of two strut -based (body-centered cubic, BCC, and face-centered cubic, FCC) and three triply periodic minimum surfaces (gyroid, primitive, diamond) lattice structures produced by electron beam melting method from Ti6Al4V powder material. Compression and tension tests were performed and compared with finite element analysis results. Moreover, scanning electron microscope analysis for dimensional variation and optical microscope analysis for microstructural changes were performed. Gibson-Ashby relations and related coefficients were also calculated. Results showed that gyroid specimens showed the highest (21.7%) and diamond specimens showed the lowest dimensional error (6.5%). Tensile test results showed that the highest and the lowest ultimate tensile strength were observed on diamond (422 MPa) and BCC (192 MPa) specimens, respectively. Compression test results showed that the diamond had the highest yield stress (427 MPa) and first maximum compressive strength (526 MPa). The highest and the lowest energy absorption capabilities were observed on gyroid (180.2 MJ/m3) and BCC (84.2 MJ/m3) topologies, respectively.


Optical characterization of Ga2SeS layered crystals by transmission, reflection and ellipsometry
IŞIK, MEHMET; Hasanlı, Nızamı (2015-07-10)
Optical properties of Ga2SeS crystals grown by Bridgman method were investigated by transmission, reflection and ellipsometry measurements. Analysis of the transmission and reflection measurements performed in the wavelength range of 400-1100 nm at room temperature indicated the presence of indirect and direct transitions with 2.28 eV and 2.38 eV band gap energies. Ellipsometry measurements were carried out in the 1.2-6.0 eV spectral region to get information about optical constants, real and imaginary part...
Structural properties of indium phosphide nanorods: molecular dynamics simulations
Nayir, Nadire; TAŞCI, EMRE; Erkoç, Şakir (2016-01-01)
We study the structural properties of the indium phosphide nanorods of different thickness in zinc blende and wurtzite phases by performing classical molecular dynamics simulations using an inter-atomic potential. In addition to different temperatures, the nanorods are also investigated under strain and compression. When the stretch is applied, simulations reveal that the sequence of the irreversible structural transformation for the zinc blende nanorods is zinc blende -> rock salt -> wurtzite and the wurtz...
Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers
Li, C.; Zhang, Y.; Mann, M.; Hiralal, P.; Ünalan, Hüsnü Emrah; Lei, W.; Wang, B. P.; Chu, D. P.; Pribat, D.; Amaratunga, G. A. J.; Milne, W. I. (AIP Publishing, 2010-04-05)
A structure composed of zinc oxide nanowires (ZNWs) grown hydrothermally on an array of vertically aligned carbon nanofibers (CNFs) was fabricated and its field emission properties determined and compared with bare CNF arrays. The combination produced a macroscopic turn-on field of 1.2 V/mu m which was found to be the lowest reported from ZNWs deposited on a two-dimensional substrate and much less than the equivalent CNFs array (5.2 V/mu m). Crucially, field emission was found to be much more stable at high...
Product-oriented material testing and FEA for hyperelastic suspension jounce bumper design
Caliskan, Kemal; Konukseven, Erhan İlhan; Unlusoy, Y Samim (2010-01-01)
The basic problem in the finite element analysis of parts made of hyperelastic materials is the identification of mathematical material model coefficients. Furthermore, selection of a suitable mathematical hyperelastic material model may not be straightforward. In this study, a design methodology is presented for hyperelastic suspension jounce bumpers. The commonly used traditional trial-and-error method for jounce bumper design results in high mould costs for prototype production and prolongs the time requ...
Singularities of spectra of infrared reflection of tertiary compounds of the type T1BX2
Hasanlı, Nızamı; Khomutova, M.D.; Sardarly, R.M.; Tagorov, V.I. (Springer Science and Business Media LLC, 1977-07-01)
The frequencies of lattice vibrations are calculated for compounds of the type T1BX2 on the basis of the linear-chain model. The calculated frequencies are compared with experimental values for TlGaS2 and TlGaSe2. The good agreement between the calculated and experimental frequencies serves as proof of the applicability of the linear-chain model to compounds of the T1BX2 type. The proposed method of calculation of frequencies makes it possible to predict the theoretical frequencies of lattice vibrations of ...
Citation Formats
B. Sokollu, O. Gulcan, and E. İ. Konukseven, “Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting,” ADDITIVE MANUFACTURING, vol. 60, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: