Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane
Date
2016-01-01
Author
Manna, Joydev
Akbayrak, Serdar
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
230
views
0
downloads
Cite This
Magnetic ferrite nanopowders were coated with polydopamine which is inert against the hydrolysis of ammonia borane. Coating of ferrite powders was achieved by pH-induced self-polymerization of dopamine hydrochloride at room temperature. Palladium(0) nanoparticles supported on polydopamine coated ferrite (Pd-0/PDA-Fe3O4) were prepared by impregnation of palladium(II) ions on the surface of PDA-Fe3O4 followed by their reduction with sodium borohydride in aqueous solution at room temperature. Magnetically isolable Pd-0/PDA-Fe3O4 catalysts were characterized by a combination of advanced analytical techniques. The results reveal that palladium nanoparticles with an average size of 2.0 +/- 0.4 nm are well dispersed on polydopamine layer with a thickness of 3.0 +/- 0.5 nm on the surface of ferrite nanopowders. Pd-0/PDA-Fe3O4 with a palladium loading of 3.81% wt was found to be a highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 14.5 min(-1) at 25.0 +/- 0.1 degrees C. Magnetically isolable Pd-0/PDA-Fe3O4 catalysts preserve their initial catalytic activity even after the tenth use providing the release of 3 equivalent H-2 per mole of ammonia borane. The report also includes the results of kinetic studies on the hydrolytic dehydrogenation of ammonia borane performed at various temperatures and different catalyst concentrations.
Subject Keywords
Stability
,
Oxide
,
Nanoclusters
,
Surface
,
Ruthenium(0)
,
Graphene
,
cobalt ferrite
,
Eficient catalysts
,
Metal nanoparticles
,
Hydrogen generation
URI
https://hdl.handle.net/11511/41454
Journal
RSC ADVANCES
DOI
https://doi.org/10.1039/c6ra23007e
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2022-11-01)
A new palladium(0) nanocatalyst is developed to enhance the catalytic efficiency of precious metal catalysts in hydrogen generation from the hydrolytic dehydrogenation of ammonia borane. Magnetically separable Pd-0/Co3O4 nanocatalyst can readily be obtained by the reduction of palladium(II) cations impregnated on cobalt(II, III) oxide at room temperature. The obtained Pd-0/Co3O4 nanocatalyst with 0.25% wt. palladium loading has outstanding catalytic activity with a record turnover frequency of 3048 min(-1) ...
Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime
DURAP, FEYYAZ; Zahmakiran, Mehmet; Özkar, Saim (2009-09-01)
The simplest amine-borane, considered as solid hydrogen storage material, ammonia-borane (H(3)NBH(3)) can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, we report the preparation of a novel catalyst, water dispersible laurate-stabilized ruthenium(0) nanoclusters from the dimethylamine-borane reduction of ruthenium(III) chloride in sodium laurate solution at room temperature. The ruthenium nanoclusters in average size of 2.6 +/- 1.2 nm were isolated from the solution and well c...
Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane
Tonbul, Yalcin; Akbayrak, Serdar; Özkar, Saim (2016-07-13)
Palladium(0) nanoparticles supported on nanoceria (Pd-0/CeO2) were prepared by the impregnation of palladium(II) ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature. Pd-0/CeO2 were isolated from the reaction solution by centrifugation and characterized by ICP-OES, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that palladium(0) nanoparticles were uniformly dispersed on ceria and the resulting Pd-0/CeO2 are highly active and r...
Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane
Metin, Onder; Kayhan, Emine; Özkar, Saim; Schneider, Jorg J. (2012-05-01)
Chemically derived graphene (CDG) was prepared by hydrazine hydrate reduction of graphene oxide and used as support for palladium nanoparticles (Pd NPs) generated ex situ with controllable particle size and dispersion. The Pd NPs supported on CDG were well characterized by using a combination of advance analytical techniques and employed as catalyst in the dehydrogenation and hydrolysis of ammonia borane (AB) in organic solvents and aqueous solutions, respectively. Monodisperse Pd NPs of 4.5 nm were prepare...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Manna, S. Akbayrak, and S. Özkar, “Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane,”
RSC ADVANCES
, pp. 102035–102042, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41454.