Optimization of in-device depleted passivation layer for InGaAs photodetectors



Optimization of Mesa Structured InGaAs Based Photodiode Arrays
Dolas, M. Halit; Çırçır, Kübra; Kocaman, Serdar (2017-04-13)
We design lattice matched InP/In0.53Ga0.47As mesa structured heterojunction p-n photodiodes with a novel passivation methodology based on a fully depleted thin p-InP layer. Mesa-structured detectors are targeted due to their competitive advantages for applications such as multicolor/hyperspectral imaging. Test detector pixels with different perimeter/area ratios are fabricated with and without etching thin InP passivation layer between pixels in order to comparatively examine passivating behavior. I-V chara...
Active surface passivation for SWIR InGaAs photodetectors
Necati, Işık; Kocaman, Serdar; Department of Aerospace Engineering (2022-1)
This thesis work offers a new method for improving one of the performance parameters in infrared photodetector technology. This method involves suppressing the surface dark current by utilizing a constant E-field on the surface of the photodetector. By interrupting the channel formation on the surface, a significant improvement in the generation-recombination (GR) dark current component is observed. Relatively minor improvements on differential resistance and the shunt component of the dark current are note...
Electrical crosstalk suppression for mesa-based in-device passivated InGaAs photodetectors
Çırçır, Kübra; Kocaman, Serdar (2022-12-01)
Inclusion of an in-device passivation layer in mesa-based lattice-matched InGaAs photodetectors provides a lower dark current than the conventional mesa type structures. However, due to the high electric field in the passivation layer between the pixels, improved dark current characteristics come with increased electrical crosstalk. Manipulating the electrical field distribution with an additional thin epilayer promises to reduce this inter-pixel carrier collection without disturbing the primary aim of the ...
Utilization of motor current based torque feedback to improve the transparency of haptic interfaces
Baser, Ozgur; Konukseven, Erhan İlhan (2012-06-01)
In this paper motor current based torque feedback compensator is utilized in actuator space together with a closed loop impedance control algorithm instead of model based compensator to improve the transparency performance of haptic interfaces; moreover, a novel transparency evaluation metric is developed to evaluate the transparency performance of these devices. The proposed control algorithm is experimentally tested on a 1 DOF haptic device by employing a low-cost current sensor. It is also tested on a MA...
Fully Depleted InP Nano-Layer for In-Device Passivation of InGaAs SWIR Detectors
Dolas, M. Halit; Kocaman, Serdar (2017-12-01)
We designed a p-n InGaAs/InP heterojunction photodiode with a novel passivation approach that employs a thin and fully depleted in-device (embedded in the p-n structure) p-InP layer. We comparatively characterized mesa-type detector pixels and experimentally observed expected passivating behavior. Characterization results under illumination indicated that fully depleted p-InP layer increases photo-current as well due to increasing device active area. Dark current analysis of detector pixels with different a...
Citation Formats
K. Çırçır and S. Kocaman, “Optimization of in-device depleted passivation layer for InGaAs photodetectors,” Infrared Physics and Technology, pp. 360–364, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30524.