Optimization of Mesa Structured InGaAs Based Photodiode Arrays

We design lattice matched InP/In0.53Ga0.47As mesa structured heterojunction p-n photodiodes with a novel passivation methodology based on a fully depleted thin p-InP layer. Mesa-structured detectors are targeted due to their competitive advantages for applications such as multicolor/hyperspectral imaging. Test detector pixels with different perimeter/area ratios are fabricated with and without etching thin InP passivation layer between pixels in order to comparatively examine passivating behavior. I-V characteristics of the test detectors are measured at room temperature. Based on the results from different sized pixel groups, bulk and surface dark current components are separated. Results show that thin InP layer decreases dark current by a factor of 3 while increasing photo current due to a higher carrier collection efficiency.
Conference on Image Sensing Technologies - Materials, Devices, Systems, and Applications IV


Fully Depleted InP Nano-Layer for In-Device Passivation of InGaAs SWIR Detectors
Dolas, M. Halit; Kocaman, Serdar (2017-12-01)
We designed a p-n InGaAs/InP heterojunction photodiode with a novel passivation approach that employs a thin and fully depleted in-device (embedded in the p-n structure) p-InP layer. We comparatively characterized mesa-type detector pixels and experimentally observed expected passivating behavior. Characterization results under illumination indicated that fully depleted p-InP layer increases photo-current as well due to increasing device active area. Dark current analysis of detector pixels with different a...
Linear static analysis of large structural models on pc clusters
Özmen, Semih; Toker, Kurç; Department of Civil Engineering (2009)
This research focuses on implementing and improving a parallel solution framework for the linear static analysis of large structural models on PC clusters. The framework consists of two separate programs where the first one is responsible from preparing data for the parallel solution that involves partitioning, workload balancing, and equation numbering. The second program is a fully parallel nite element program that utilizes substructure based solution approach with direct solvers. The first step of data...
Performance-based parametric design explorations: A method for generating appropriate building components
Ercan, Burak; Elias Özkan, Soofia Tahira (2015-05-01)
Performance-based parametric design explorations depend on formulating custom-designed workflows that require reading, writing, interpreting and manipulating databases, as part of the design process. The possibilities of customization and parameterization offered by the user-friendly interfaces of advanced building-performance simulation software and digital design tools have now enabled architects to carry out performance-based design explorations without the help of simulation experts. This paper presents...
Optimization of nanoparticle arrays to design efficient couplers for plasmonic nanowire networks
Altınoklu, Aşkın; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2019)
In this thesis, a novel optimization strategy for design and optimization of efficient couplers to improve nano-optical links in complex plasmonic nanowire networks is presented. Various cases involving alternative combinations of nanowire transmission lines with different types and lengths are considered. As the optimization environment, a full-wave solver based on surface integral equations and the multilevel fast multipole algorithm (MLFMA) developed for efficient and accurate solutions of plasmonic prob...
Learning Smooth Pattern Transformation Manifolds
Vural, Elif (2013-04-01)
Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that represent observations of geometrically transformed signals. To construct a manifold, we build a representative pattern whose transformations accurately fit various input images. We examine two objectives of the manifold-building problem, namely, approximation a...
Citation Formats
M. H. Dolas, K. Çırçır, and S. Kocaman, “Optimization of Mesa Structured InGaAs Based Photodiode Arrays,” Anaheim, CA, 2017, vol. 10209, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30465.