Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nilotinib significantly induces apoptosis in imatinib resistant K562 cells with wild-type BCR-ABL, as effectively as in parental sensitive counterparts
Download
index.pdf
Date
2010-02-01
Author
Ekiz, Huseyin Atakan
Can, Geylani
Gündüz, Ufuk
BARAN, YUSUF
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
156
views
0
downloads
Cite This
Chronic myeloid leukemia (CML) is a hematological malignancy characterized by high levels of immature white blood cells. CML is caused by the translocation between chromosomes 9 and 22 (which results in the formation of the Philadelphia chromosome) creating BCR-ABL fusion protein. Imatinib and nilotinib are chemotherapeutic drugs which specifically bind to the BCR-ABL and inhibit cancer cells. Nilotinib is more effective in this respect than imatinib. We have shown that nilotinib induces apoptosis in imatinib-resistant K562 CML cells which have the wild-type BCR-ABL fusion gene almost to the same extent as it does in the parental sensitive cells by the increase in caspase-3 enzyme activity and the decrease in mitochondrial membrane potential. This effect of nilotinib, even in low concentrations, may indicate the efficacy of the usage of nilotinib in imatinib-resistant CML with less risk of undesired cytotoxic effects in the remaining cells of the body.
Subject Keywords
İmatinib
,
Nilotinib
,
Drug resistance
,
BCR–ABL
,
CML
URI
https://hdl.handle.net/11511/30550
Journal
HEMATOLOGY
DOI
https://doi.org/10.1179/102453310x12583347009775
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Bioinformatic prediction and coexpression network identifies repurposed novel drugs for papillary thyroid cancer
Temiz, Kubra (Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü; 2022-10)
Thyroid cancer is a type of cancer that affects the endocrine system and has a high malignancy. Papillary thyroid cancer, the most common subtype of thyroid cancer, also has well-differentiated features. Early diagnosed and well-differentiated thyroid cancer is generally associated with a good prognosis and/or survival rate. Therefore, it is of great importance to determine the molecular signatures of the disease. In this study, five papillary thyroid cancer-related gene expression datasets were analyzed us...
Apoptotic Effects of Resveratrol, a Grape Polyphenol, on Imatinib-Sensitive and Resistant K562 Chronic Myeloid Leukemia Cells
Can, Geylani; Cakir, Zeynep; Kartal, Melts; Gündüz, Ufuk; BARAN, YUSUF (2012-07-01)
Aim: To examine the antiproliferative and apoptotic effects of resveratrol on imatinib-sensitive and imatinib-resistant K562 chronic myeloid leukemia cells. Materials and Methods: Antiproliferative effects of resveratrol were determined by the 3-Bis[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide inner salt (XTT) cell proliferation assay. Apoptotic effects of resveratrol on sensitive K562 and resistant K562/IMA-3 cells were determined through changes in caspase-3 activity, loss of mitochond...
Anticancer activity of chlorpromazine on U266 multiple myeloma cell line
Güleç, Aliye Ezgi; Özen, Can; Özçubukçu, Salih; Department of Biochemistry (2017)
Multiple Myeloma (MM) is the second most common hematological malignancy caused by malignant growth of plasma B cells. It accounts for 10% of deaths from blood cancers. Although introduction of new drugs has significantly increased the success of chemotherapy, MM remains as an incurable disease with a high relapse rate. Drug repositioning, finding new uses for approved drugs, is a frequently used strategy for the discovery of new chemotherapeutic agents. Since already approved drugs are used, the cost and t...
Capture and release of viable CTCs in microfluidic channel
Ateş, Hatice Ceren; Şen Doğan, Begüm; Özgür, Ebru; Külah, Haluk (null; 2017-10-04)
The number of circulating tumor cells (CTCs) in blood is associated with prognosis in several types of cancer. Isolation and characterization of CTCs have important clinical significance in terms of prognosis and early detection of response to treatment. Moreover, downstream characterization of CTCs may help better patient stratification and therapy guidance. However, CTCs are extremely rare and highly sensitive and specific technology is required to isolate viable CTCs from blood cells. In this study, a su...
Reversal of multidrug resistance in mcf-7 breast adenocarcinoma cell line by silencing interleukin 6 with RNA interference
Çakmak, Neşe; Gündüz, Ufuk; Department of Biology (2013)
Multidrug resistance (MDR) in cancer is characterized by development of resistance to several unrelated drugs upon long time administration of a certain type of chemotherapeutic agent. In doxorubicin resistant MCF-7 cell line, resistance is developed mainly by upregulation of MDR1 gene which encodes an ABC transporter protein known as P-glycoprotein. Interleukin 6 (IL-6) is a cytokine which acts as a growth factor for certain cell types including some cancer cells. IL-6 is found at high levels in cancer pat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. A. Ekiz, G. Can, U. Gündüz, and Y. BARAN, “Nilotinib significantly induces apoptosis in imatinib resistant K562 cells with wild-type BCR-ABL, as effectively as in parental sensitive counterparts,”
HEMATOLOGY
, pp. 33–38, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30550.