APOBEC3B expression in drug resistant MCF-7 breast cancer cell lines

2016-04-01
Onguru, Onder
Yalcin, Serap
Rosemblit, Cinthia
Zhang, Paul J.
Kilic, Selim
Gündüz, Ufuk
APOBEC3B belongs to a protein family of cytidine deaminases that can insert mutations in DNA and RNA as a result of their ability to deaminate cytidine to uridine. It has been shown that APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers. We investigated APOBEC3B expression in four drug resistant breast cancer cell lines (Doxorubicin, Etoposide, Paclitaxel and Docetaxel resistant MCF-7 cell lines) using a novel RNA in situ hybridization technology (RNAscope) and compared expression levels with drug sensitive MCF-7 cell line. After RNAscope staining, slides were scanned and saved as digital images using Aperio scanner and software. Quantitative scoring utilizing the number of punctate dots present within each cell boundary was performed for the parameters including positive cell percentage and signal intensity per positive cell. In Doxorubicin and Etoposide resistant MCF-7 cell lines, APOBEC3B expression was approximately five-fold increased (23% and 24% respectively) with higher signal intensity (1.92 and 1.44 signal/cell, respectively) compared to drug sensitive MCF-7 cell line (5%, 1.00 signal/cell) with statistical significance. The increase of APOBEC3B expression in Docataxel resitant and Paclitaxel resistant MCF-7 cell lines was not very high. In conclusion, APOBEC3B expression was increased in some population of tumor cells of drug resistant cell lines. At least for some drugs, APOBEC3B expression may be related to drug resistance, subjecting to some tumor cells to frequent mutation. (C) 2016 Elsevier Masson SAS. All rights reserved.
BIOMEDICINE & PHARMACOTHERAPY

Suggestions

Molecular cloning, characterization, and expression analysis of a gene encoding a Ran binding protein (RanBP) in Cucumis melo L.
Baloglu, Mehmet Cengiz; Zakharov, Florence Negre; Öktem, Hüseyin Avni; Yücel, Ayşe Meral (2011-01-01)
Ran binding proteins (RanBPs) are highly conserved members of the GTP-binding protein family that are involved in nuclear protein export between the nucleus and the cytoplasm. In this study, a CmRanBP gene from a melon was isolated (Cucumis melo L.) using the RACE (rapid amplification of cDNA ends) method. The 778 basepair long melon, with a RanBP cDNA encoding consisting of 197 amino acids (22.2 kDa protein), was characterized (GenBank accession no: EU853459). The predicted amino acid sequence of CmRanBP w...
Inference of Gene Regulatory Networks Via Multiple Data Sources and a Recommendation Method
Ozsoy, Makbule Gulcin; Polat, Faruk; Alhajj, Reda (2015-11-12)
Gene regulatory networks (GRNs) are composed of biological components, including genes, proteins and metabolites, and their interactions. In general, computational methods are used to infer the connections among these components. However, computational methods should take into account the general features of the GRNs, which are sparseness, scale-free topology, modularity and structure of the inferred networks. In this work, observing the common aspects between recommendation systems and GRNs, we decided to ...
Genome-wide sequence analysis of human splice acceptor regions for motif discovery
Karaduman Bahçe, Gülşah; Aydın Son, Yeşim; Department of Medical Informatics (2020-12-23)
For eukaryotic cells, alternative splicing of genes is a vital mechanism that drives protein diversity. Splicing signals on the genomic sequence controls the regulatory factors that orchestrate the alternative splicing. 3’ and 5’ splice sites and common branchpoint sequences are the primary splicing signals, and changes in these signals can be disease- causing. Nevertheless, an extensive genome-wide analysis of the sequences around these signals is lacking. In this study, we focused on the genome-wide motif...
Expression and activity analyses of industrially important extracellular enzymes produced by a bacilysin knock-out mutant of Bacillus Subtilis
Aytekin, Samet; Özcengiz, Gülay; Okay, Sezer; Department of Molecular Biology and Genetics (2018)
Bacilysin, the smallest peptide antibiotic known to date, is produced non-ribosomally by Bacillus subtilis by the collective actions of seven proteins transcribed from bacABCDEF operon and bacG gene. Bacilysin is a two-amino acid peptide composed of L-alanine and a modified amino acid, L-anticapsin. Bacilysin biosynthesis was shown to be strongly regulated by quorum sensing through the actions of global regulator proteins including Spo0K, Spo0H, Spo0A, ComQ/ComX, ComP/ComA as well as several Phr proteins, O...
ODYSSEY: a tool for microRNA-mRNA expression and interaction visualization
Taciroğlu, Alperen; Acar, Aybar Can; Konu Karakayalı, Özlen; Department of Bioinformatics (2018)
MicroRNAs (miRNAs) are non-coding short RNA molecules that are found in all metazoa studied so far. When distinct metazoa genomes considered up to 200 genes encode for unique miRNAs that show variability between species. Regulatory functions of miRNAs have been studied for 20 years starting after their discovery. The research suggests that they are involved in a wide spectrum of biological activities including apoptosis, tumorigenesis, development, homeostasis and viral infections. miRNAs regulate these cel...
Citation Formats
O. Onguru, S. Yalcin, C. Rosemblit, P. J. Zhang, S. Kilic, and U. Gündüz, “APOBEC3B expression in drug resistant MCF-7 breast cancer cell lines,” BIOMEDICINE & PHARMACOTHERAPY, pp. 87–92, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30615.