Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CpG oligodeoxynucleotide- loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells
Date
2016-03-01
Author
Pourianazar, Negar Taghavi
Gündüz, Ufuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
229
views
0
downloads
Cite This
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which can generate a signal cascade for cell death. In our study, we utilized three-layer magnetic nanoparticles composed of a Fe3O4 magnetic core, an aminosilane (APTS) interlayer and a cationic poly(amidoamine) (PAMAM) dendrimer. This will be a novel targeted delivery system to enhance the accumulation of CpG-ODN molecules in tumor cells. The validation of CpG-ODN binding to DcMNPs was performed using agarose gel electrophoresis, UV-spectrophotometer, XPS analyses. Cytotoxicity of conjugates was assessed in MDA-MB231 and SKBR3 cancer cells based on cell viability by XTT assay and flow cytometric analysis. Our results indicated that the synthesized DcMNPs having high positive charges on their surface could attach to CpG-ODN molecules via electrostatic means. These nanoparticles with the average sizes of 40 +/- 10 nm bind to CpG-ODN molecules efficiently and induce cell death in MDA-MB231 and SKBR3 tumor cells and could be considered a suitable targeted delivery system for CpG-ODN in biomedical applications. The magnetic core of these nanoparticles represents a promising option for selective drug targeting as they can be concentrated and held in position by means of an external magnetic field. (C) 2016 Elsevier Masson SAS. All rights reserved.
Subject Keywords
Targeted therapy
,
Cancer therapy
,
CpG-ODN
,
Flow cytometry
,
Drug delivery
,
PAMAM dendrimer
URI
https://hdl.handle.net/11511/30635
Journal
BIOMEDICINE & PHARMACOTHERAPY
DOI
https://doi.org/10.1016/j.biopha.2016.01.002
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
GST isoenzymes in matched normal and neoplastic breast tissue
OĞUZTÜZÜN, SERPİL; Abu-Hijleh, A.; ÇOBAN, TÜLAY; Bulbul, D.; KILIÇ, MURAT; İŞCAN, Mümtaz; İşcan, Mesude (AEPress, s.r.o., 2011-01-01)
The potential to metabolize endogenous and exogenous substances may influence breast cancer development and tumor growth. Therefore we investigated GST activity and the protein expression of glutathione S-transferases (GSTs) isoenzymes known to be involved in the metabolism of endogenous and exogenous carcinogens in breast cancer tissue to obtain new information on their possible role in tumor progression.
Superior Photodynamic Therapy of Colon Cancer Cells by Selenophene-BODIPY-Loaded Superparamagnetic Iron Oxide Nanoparticles
Ozvural Sertcelik, Kubra Nur; Karaman, Osman; Almammadov, Toghrul; Günbaş, Emrullah Görkem; Kolemen, Safacan; Yagci Acar, Havva; Onbasli, Kubra (2022-01-01)
© 2022 Wiley-VCH GmbH.Development of targeted nanoparticles as carriers to deliver photosensitizers to cancer cells is highly beneficial for ensuring the expected therapeutic outcome of photodynamic therapy. Herein, polyacrylic acid (PAA) coated superparamagnetic iron oxide nanoparticles (SPIONs), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) were loaded with a BODIPY-based (BOD-Se-I) photosensitizer (Cet-PAA@SPION/BOD-Se-I) to achieve enhanced and selective photodynami...
INVESTIGATION AND COMPARISON OF THE THERAPEUTIC EFFECTS OF PALBOCICLIB-LOADED MAGNETIC NANOPARTICLES ON 2D, 3D AND EX-VIVO BREAST CANCER MODELS
Parsian, Maryam; Özen, Can; Gündüz, Ufuk; Department of Biotechnology (2022-8-03)
The development of new tissue culture models is needed in cancer research and personalized medicine to better predict patients' responses to treatment. Using live tumor cells as a testing platform for drug development and identifying optimal therapy is a promising strategy. We described a new tissue culture approach that combines a microfluidic chip with the micro-dissected breast cancer tumor slices. The tumors from MDA-MB-231, SKBR-3, and MCF-7 cell lines were created in CD1 nude mice cultured in this mic...
PEI – starch nanoparticles for cancer gene therapy
Kandemir, Berke Bilgenur; Hasırcı, Vasıf Nejat; Aşçıoğlu Öz, Gamze; Department of Biotechnology (2013)
Cancer is the most serious disease of in this century and death rates due cancer are increasing rapidly. Since the conventional cancer treatment techniques like chemotherapy, radiation therapy and surgical operations are not sufficiently efficient and they even are harmful for healthy tissues, there is an urgent need for effective treatment techniques with minimal or no side effects. Controlled drug delivery systems are offered as an alternative approach to cancer therapy that helps prevent excessive drug u...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. T. Pourianazar and U. Gündüz, “CpG oligodeoxynucleotide- loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells,”
BIOMEDICINE & PHARMACOTHERAPY
, pp. 81–91, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30635.