Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects
Date
2013-06-01
Author
Huri, Pinar Yilgor
Huri, Gazi
Yasar, Umit
UÇAR , YURDANUR
DİKMEN, NURTEN
Hasırcı, Nesrin
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are early and late appearing factors during bone regeneration, respectively, was shown in vitro to enhance osteoblastic differentiation of bone marrow derived mesenchymal stem cells. In the present study, the aim was to study the effectiveness of this delivery strategy in a rabbit iliac crest model. 3D plotted poly(epsilon-caprolactone) scaffolds were loaded with BMP carrying nanoparticles to achieve: (a) single BMP-2 or BMP-7 delivery, and (b) their combined delivery in a simultaneous or (c) sequential (biomimetic) fashion. After eight weeks of implantation, computed tomography and biomechanical tests showed better mineralized matrix formation and bone-implant union strength at the defect site in the case of sequential delivery compared to single or simultaneous delivery modes. Bone mineral density (BMD) and push-out stress were: 33.65 +/- 2.25 g cm(-3) and 14.5 +/- 2.28 MPa, respectively, and almost 2.5 fold higher in comparison to those without growth factors (BMD: 14.14 +/- 1.21 g cm(-3); PS: 6.59 +/- 0.65 MPa). This study, therefore, supports those obtained in vitro and emphasizes the importance of mimicking the natural timing of bioavailability of osteogenic factors in improving the regeneration of critical-sized bone defects.
Subject Keywords
Bone morphogenetic protein-2
,
Sequential bmp-2/bmp-7 delivery
,
Marrow stromal cells
,
Factor-beta
,
In-vitro.Scaffolds
,
Repair.Bmp-2
,
Biocompatibility
,
Systems
URI
https://hdl.handle.net/11511/30665
Journal
BIOMEDICAL MATERIALS
DOI
https://doi.org/10.1088/1748-6041/8/4/045009
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Sequential BMP-2/BMP-7 delivery from polyester nanocapsules
Yilgor, P.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2010-05-01)
The aim of this study was to develop a nanosized, controlled growth factor release system to incorporate into tissue engineering scaffolds and thus activate the cells seeded in the scaffold. Nanocapsules of poly(lactic acid-co-glycolic acid) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were loaded with the bone morphogenetic proteins BMP-2 and BMP-7, respectively, and with bovine serum albumin (BSA), the model protein. BSA-loading efficiency and release kinetics were used to determine the ...
A robust optimization approach for the breast cancer targeted design of PEtOx-b-PLA polymersomes
Oz, Umut Can; Bolat, Zeynep Busra; Ozkose, Umut Ugur; Gulyuz, Sevgi; Kucukturkmen, Berrin; Khalily, Melek Parlak; Özçubukçu, Salih; Yilmaz, Ozgur; Telci, Dilek; ESENDAĞLI, GÜNEŞ; Sahin, Fikrettin; Bozkir, Asuman (2021-04-01)
© 2021 Elsevier B.V.The equipping of nanoparticles with the peptide moiety recognizing a particular receptor, enables cell or tissue-specific targeting, therefore the optimization of the targeted nanoparticles is a key factor in the formulation design process. In this paper, we report the optimization concept of Doxorubicin encapsulating PEtOx-b-PLA polymersome formulation equipped with Peptide18, which is a breast cancer recognizing tumor homing peptide, and the unveiling of the cell-specific delivery pote...
A Crack Phase-field Model to Analyze Aortic Dissections
Holzapfel, Gerhard A.; Gültekin, Osman; Hager, Sandra P.; Dal, Hüsnü (2019-09-05)
This study analyzes the lethal clinical condition of aortic dissections from a numerical point of view.On the basis of our previous contributions [1,2], we apply a holistic geometrical approach to fracture,namely the crack phase-field, which inherits the intrinsic features of gradient damage and variationalfracture mechanics. The continuum framework captures anisotropy, is thermodynamically consistentand based on finite strains. The balance of linear momentum and the crack evolution equation governthe coupl...
A high throughput approach for analysis of cell nuclear deformability at single cell level
Ermis, Menekse; Akkaynak, Derya; Chen, Pu; Demirci, Utkan; Hasırcı, Vasıf Nejat (2016-11-14)
Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron ...
Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering
Yilgor, Pinar; Tuzlakoglu, Kadriye; Reis, Rui L.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2009-07-01)
The aim of this study was to develop a 3-D construct carrying an inherent sequential growth factor delivery system. Poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules loaded with bone morphogenetic protein BMP-2 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules loaded with BIVIP-7 made the early release of BMP-2 and longer term release of BMP-7 possible. 3-D fiber mesh scaffolds were prepared from chitosan and from chitosan-PEO by wet spinning. Chitosan of 4% concentration in 2% aceti...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Y. Huri et al., “A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects,”
BIOMEDICAL MATERIALS
, pp. 0–0, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30665.