Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Anti-cancer effect of clofazimine as a single agent and in combination with cisplatin on U266 multiple myeloma cell line
Date
2017-04-01
Author
Durusu, Ipek Z.
Husnugil, Hazal H.
ATAŞ, Heval
BİBER, Aysenur
GEREKCİ, Selin
Gulec, Ezgi A.
Özen, Can
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
148
views
0
downloads
Cite This
Multiple Myeloma (MM) is a malignant neoplasm of bone marrow plasma B cells with high morbidity. Clofazimine (CLF) is an FDA-approved leprostatic, anti-tuberculosis, and anti-inflammatory drug that was previously shown to have growth suppression effect on various cancer types such as hepatocellular, lung, cervix, esophageal, colon, and breast cancer as well as melanoma, neuroblastoma, and leukemia. The objective of this study was to evaluate the anticancer effect and mechanism of CLF on U266 MM cell line. CLF (10 mu M, 24 h) treatment resulted up to 72% growth suppression on a panel of hematological cell lines. Dose-response study conducted on U266 MM cell line revealed an IC50 value of 9.8 +/- 0.7 mu M. CLF also showed a synergistic inhibition effect in combination with cisplatin. In mechanistic assays, CLF treatment caused mitochondrial membrane depolarization, change in cell membrane asymmetry and increase in caspase-3 activity; indicating to an intrinsic apoptosis mechanism. This study provides new evidence for the anticancer effect of CLF on U266 cell line. Further in vivo and clinical studies are warranted to evaluate its therapeutic potential for MM treatment.
Subject Keywords
Synergism
,
Apoptosis
,
Clofazimine
,
Multiple myeloma
,
Cancer
URI
https://hdl.handle.net/11511/30855
Journal
LEUKEMIA RESEARCH
DOI
https://doi.org/10.1016/j.leukres.2017.01.019
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Anti-Cancer Effects of Clofazimine As a Single Agent and in Combination with Cisplatin in Multiple Myeloma
Durusu, Ipek; Hüsnügil, Hepşen Hazal; Atas, Heval; Biber, Aysenur; Gerekci, Selin; Gulec, Aliye Ezgi; Özen, Can (2016-12-02)
Multiple Myeloma (MM) is a malignant neoplasm of bone marrow plasma B cells with high morbidity. Clofazimine (CLF) is an FDA-approved leprostatic, anti-tuberculosis, and anti-inflammatory drug that was previously shown to have growth suppression effect on various cancer types such as hepatocellular, lung, cervix, esophageal, colon, and breast cancer as well as melanoma, neuroblastoma, and leukemia. The objective of this study was to evaluate the anticancer effect and mechanism of CLF on U266 MM cell line. C...
Anticancer activity of chlorpromazine on U266 multiple myeloma cell line
Güleç, Aliye Ezgi; Özen, Can; Özçubukçu, Salih; Department of Biochemistry (2017)
Multiple Myeloma (MM) is the second most common hematological malignancy caused by malignant growth of plasma B cells. It accounts for 10% of deaths from blood cancers. Although introduction of new drugs has significantly increased the success of chemotherapy, MM remains as an incurable disease with a high relapse rate. Drug repositioning, finding new uses for approved drugs, is a frequently used strategy for the discovery of new chemotherapeutic agents. Since already approved drugs are used, the cost and t...
Induction of apoptosis and cell cycle arrest on U266 multiple myeloma cell line by prochlorperazine
Hüsnügil, Hepşen Hazal; Özen, Can; Banerjee, Sreeparna; Department of Biochemistry (2016)
Multiple myeloma (MM) is a plasma cell neoplasm accounting for 1% of all malignancies and 13% of hematological malignancies. Despite the introduction of potent anticancer agents, MM remains as an incurable disease. High frequency of relapses and acquisition of resistance to current chemotherapy create a need for the development of novel agents for MM treatment. Prochlorperazine (PCP) is an FDA-approved phenothiazine drug, mainly used for the treatment of chemotherapy-associated nausea and vomiting. In addit...
Repurposing of antipsychotic agent trifluoperazine for multiple myeloma treatment: in vitro studies
Ataş, Heval; Özen, Can; Erdoğ, Aslı; Department of Biotechnology (2016)
Multiple Myeloma (MM) is a hematological malignancy resulting from the proliferation of plasma B cells in the bone marrow. MM accounts for 20 % of deaths from blood cancers and 2 % of deaths from all cancers. Although there have been remarkable developments in the treatment of MM, it is still an incurable disease due to the drug resistance problem. Therefore, development of novel therapies is especially important for MM patients. Drug repurposing is one of the promising strategies to discover new anticancer...
An update on molecular biology and drug resistance mechanisms of multiple myeloma
Mutlu, Pelin; Gündüz, Ufuk (Elsevier BV, 2015-12)
Multiple myeloma (MM), a neoplasm of plasma cells, is the second most common hematological malignancy. Incidance rates increase after age 40. MM is most commonly seen in men and African-American population. There are several factors to this, such as obesity, environmental factors, family history, genetic factors and monoclonal gammopathies of undetermined significance (MGUS) that have been implicated as potentially etiologic. Development of MM involves a series of complex molecular events, including chromos...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Z. Durusu et al., “Anti-cancer effect of clofazimine as a single agent and in combination with cisplatin on U266 multiple myeloma cell line,”
LEUKEMIA RESEARCH
, pp. 33–40, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30855.