Collision Chronology Along the Izmir-Ankara-Erzincan Suture Zone: Insights From the Saricakaya Basin, Western Anatolia

Download
2019-10-01
Mueller, M. A.
Licht, A.
Campbell, C.
Ocakoglu, F.
Taylor, M. H.
Burch, L.
Ugrai, T.
Kaya, Muhammed Çağrı
Kurtoglu, B.
Coster, P. M. C.
Metais, G.
Beard, K. C.
Debate persists concerning the timing and geodynamics of intercontinental collision, style of syncollisional deformation, and development of topography and fold-and-thrust belts along the >1,700-km-long Izmir-Ankara-Erzincan suture zone (IAESZ) in Turkey. Resolving this debate is a necessary precursor to evaluating the integrity of convergent margin models and kinematic, topographic, and biogeographic reconstructions of the Mediterranean domain. Geodynamic models argue either for a synchronous or diachronous collision during either the Late Cretaceous and/or Eocene, followed by Eocene slab breakoff and postcollisional magmatism. We investigate the collision chronology in western Anatolia as recorded in the sedimentary archives of the 90-km-long Saricakaya Basin perched at shallow structural levels along the IAESZ. Based on new zircon U-Pb geochronology and depositional environment and sedimentary provenance results, we demonstrate that the Saricakaya Basin is an Eocene sedimentary basin with sediment sourced from both the IAESZ and Sogut Thrust fault to the south and north, respectively, and formed primarily by flexural loading from north-south shortening along the syncollisional Sogut Thrust. Our results refine the timing of collision between the Anatolides and Pontide terranes in western Anatolia to Maastrichtian-Middle Paleocene and Early Eocene crustal shortening and basin formation. Furthermore, we demonstrate contemporaneous collision, deformation, and magmatism across the IAESZ, supporting synchronous collision models. We show that regional postcollisional magmatism can be explained by renewed underthrusting instead of slab breakoff. This new IAESZ chronology provides additional constraints for kinematic, geodynamic, and biogeographic reconstructions of the Mediterranean domain.
TECTONICS

Suggestions

New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ)
Higgins, Mark; Schoenbohm, Lindsay M.; Brocard, Gilles; Kaymakcı, Nuretdin; Gosse, John C.; Cosca, Michael A. (2015-10-01)
As the kinematics of active faults that bound the Anatolian plate are well studied, it is now essential to improve our understanding of the style and rates of intraplate deformation to constrain regional strain partitioning and improve seismic risk assessments. One of these internal structures, the Central Anatolian fault zone (CAFZ), was originally defined as a regionally significant left-lateral "tectonic escape" structure, stretching for 700km in a NE direction across the Anatolian plate. We provide new ...
Palaeostress Inversion in a Multiphase Deformed Area Kinematic and Structural Evolution of the Cankiri Basin Central Turkey Part 1 Northern Area
Kaymakcı, Nuretdin; Dijk P, Van (2000-01-01)
The kinematic and structural evolution of the major structures affecting the Çankırı Basin, central Turkey, has been deduced from a palaeostress inversion study. Four palaeostress tensor configurations indicative of four-phase structural evolution have been constructed from the fault slip data collected from the Çankırı Basin. The first two phases indicate the dominant role of thrusting and folding, and are attributed to the collision between the Pontides and the Taurides, the proposed interface of which is...
The structure of the Palaeozoic schists in the southern Menderes Massif, western Turkey: a new approach to the origin of the main Menderes Metamorphism and its relation to the Lycian Nappes
Bozkurt, Erdin (1999-01-01)
The Early Eocene to Early Oligocene tectonic history of the Menderes Massif involves a major regional Barrovian-type metamorphism (M-1, Main Menderes Metamorphism, MMM), present only in the Palaeozoic-Cenozoic metasediments (the so-called "cover" of the massif), which reached upper amphibolite facies with local anatectic melting at structurally lower levels of the cover rocks and gradually decreased southwards to greenschist facies at structurally higher levels. it is not present in the augen gneisses (the ...
Comment on "207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the Central Anatolian crust, Turkey" - Boztug, D., Tichomirowa, M. & Bombach, K., 2007, JAES 31, 71-86
Göncüoğlu, Mehmet Cemal (2009-05-20)
A continent-oceanic island arc collision model was proposed as a new geodynamic scenario for the evolution of the Cretaceous Central Anatolian granitoids in the Central Anatolian crystalline complex (CACC) by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust, Turkey. journal of Asian Earth Sciences 31,...
Actuator load calculation tool for a multiaxial test system of a rotating beam like aerostructure
Limon, Afif Umur; Çöker, Demirkan; Department of Aerospace Engineering (2018)
Design and analysis of new helicopter blades need to be verified by testing under combined multiaxial loading including centrifugal force, chord bending, beam bending and torsion loadings. In this thesis, an actuator load calculation tool for a rotating beam like aerospace structure structural test system is developed and is verified by multiaxial testing of a dummy component. The actuator load calculation tool development consists of an analysis and testing part. A dummy structural component is designed an...
Citation Formats
M. A. Mueller et al., “Collision Chronology Along the Izmir-Ankara-Erzincan Suture Zone: Insights From the Saricakaya Basin, Western Anatolia,” TECTONICS, pp. 3652–3674, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30873.