New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ)

2015-10-01
Higgins, Mark
Schoenbohm, Lindsay M.
Brocard, Gilles
Kaymakcı, Nuretdin
Gosse, John C.
Cosca, Michael A.
As the kinematics of active faults that bound the Anatolian plate are well studied, it is now essential to improve our understanding of the style and rates of intraplate deformation to constrain regional strain partitioning and improve seismic risk assessments. One of these internal structures, the Central Anatolian fault zone (CAFZ), was originally defined as a regionally significant left-lateral "tectonic escape" structure, stretching for 700km in a NE direction across the Anatolian plate. We provide new structural, geomorphic, and geochronologic data for several key segments within the central part of the CAFZ that suggest that the sinistral motion has been overstated. The Ecemis fault, the southernmost part of the CAFZ, has a late-Quaternary minimum slip rate of 1.1 +/- 0.4mm a(-1), slower than originally proposed. Farther north, the Erciyes fault has fed a linear array of monogenetic vents of the Erciyes stratovolcano and Ar-40/Ar-39 dating shows a syneruptive stress field of ESE-WNW extension from 580 +/- 130 ka to 210 +/- 180 ka. In the Erciyes basin, and central part of the CAFZ, we mapped and recharacterized the Erkilet and Gesi faults as predominantly extensional. These long-term geological rates support recent GPS observations that reveal ESE-WNW extension, which we propose as the driver of faulting since 2.73 +/- 0.08Ma. The slip rates and kinematics derived in this study are not typical of an "escape tectonic" structure. The CAFZ is a transtensional fault system that reactivates paleotectonic structures and accommodates E-W extension associated with the westward movement of Anatolia.
TECTONICS

Suggestions

DEVELOPMENT OF STRENGTH REDUCTION FACTORS FOR PERFORMANCE-BASED SEISMIC DESIGN OF BRIDGES IN FAR-FAULT SEISMIC REGIONS
Rabaia, Tareq Z. S.; Dicleli, Murat; Department of Engineering Sciences (2021-9)
In this thesis, a methodology to develop strength reduction factors for performance-based seismic design of bridges in far-fault seismic regions is presented. The presented methodology is mainly based on performing linear 5%-damped response spectrum analyses (RSA) and nonlinear time history analyses (NTHA) of bridge piers modeled as single degree of freedom (SDOF) systems. Bridge piers of both circular and rectangular sections are analyzed for wide ranges of various design parameters considering several sub...
Numerical studies on eccentrically braced frames
Kuşyılmaz, Ahmet; Topkaya, Cem; Sarıtaş, Afşin; Department of Civil Engineering (2014)
Numerical studies were performed on eccentrically steel braced frames to ascertain seismic performance factors and to examine dynamic characteristics of eccentrically braced frames (EBF). Pursuant to this goal a computer program which facilitates EBF designs was developed. In the first phase, the approximate period formula given in ASCE7-10 was evaluated and a technique based on global deformation characteristics was developed to improve the fundamental period estimates for EBFs. The results indicate that t...
A computer simulation of void dynamics under the action of electromigration and capillary forces in narrow thin interconnects
Ogurtani, TO; Oren, EE (2000-10-25)
In these studies a comprehensive picture of void dynamics in connection with the critical morphological evaluation has been thoroughly anticipated in order to understand main reasons as well as the conditions under which premature failure of metallic thin interconnects occur. Our mathematical model on diffusion and mass accumulation on void surfaces, under the action of applied electrostatic potential and capillary effects, follows a novel irreversible but discrete thermodynamic formulation of interphases a...
A methodology for lining design of circular mine shafts in different rock masses
Öztürk, Hasan (2016-09-01)
In this study, the finite element numerical modelling of 2D shaft sections in a Hoek-Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An iterative process of applying support pressure until observing no failure zone around the shaft is used to simulate the required lining support pressure for different shaft models. Later, regression analysis is carried out to find a generic shaft pressure equation representing the rock mass and...
Development of Fragility Curves for Single-Column RC Italian Bridges Using Nonlinear Static Analysis
Perdomo, Camilo; Monteiro, Ricardo; Sucuoğlu, Haluk (Informa UK Limited, 2020-05-07)
The main objective of this study is to assess the accuracy and suitability of Nonlinear Static Procedures (NSPs) in the development of analytical damage fragility curves for seismic risk assessment of large portfolios of Reinforced Concrete (RC) bridges. Seven NSP approaches, from widely used single-mode conventional pushover-based approaches to the more rigorous multi-mode conventional or adaptive pushover-based procedures are implemented. By systematically comparing fragility curve estimations in terms of...
Citation Formats
M. Higgins, L. M. Schoenbohm, G. Brocard, N. Kaymakcı, J. C. Gosse, and M. A. Cosca, “New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ),” TECTONICS, pp. 2118–2141, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48293.