Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Kinematic analysis of a manipulator with its position and velocity related singular configurations
Date
1999-10-01
Author
Özgören, Mustafa Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
138
views
0
downloads
Cite This
Forward and inverse kinematic analyses of a generic 6-R serial manipulator are carried out at both position and velocity levels. Singular configurations associated with the inverse position solution, designated as position related singular configurations (POSCs), and those associated with the inverse velocity solution, designated as velocity related singular configurations (VESOs), are investigated. At POSCs, the specified pose of the hand is not sufficient to determine some of the joint variables; the motion of the hand should also be specified. At VESCs, on the other hand, the joint variables can be determined, but to determine the joint velocities, the specified velocity state of the hand is not sufficient; its acceleration state should also be specified. Besides, the specified velocity and acceleration states should obey some compatibility conditions. Two methods are developed to determine the joint variables at POSCs and the joint velocities at VESCs. The first method, which is based on the L'Hopital's rule, is applicable only at the singular con figurations. The second method, which is based on analytical motion planning, is applicable not only at the singular configurations but also in the vicinity of them.
Subject Keywords
Value decomposition
,
Computation
,
Robot
URI
https://hdl.handle.net/11511/30978
Journal
MECHANISM AND MACHINE THEORY
DOI
https://doi.org/10.1016/s0094-114x(98)00062-7
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Kinematic analysis of spatial mechanical systems using exponential rotation matrices
Özgören, Mustafa Kemal (2007-11-01)
The mathematical properties associated with the exponential rotation matrices are reviewed. By means of two typical mechanism examples, it is demonstrated that these properties constitute a versatile analytical tool, which can be used eftectively in kinematic studies on spatial mechanical systems involving position, velocity, acceleration, and singularity analyses.
Variational iteration method for Sturm-Liouville differential equations
ALTINTAN, DERYA; Uğur, Ömür (2009-07-01)
In this article, He's variational iteration method is applied to linear Sturm-Liouville eigenvalue and boundary value problems, including the harmonic oscillator. In this method, solutions of the problems are approximated by a set of functions that may include possible constants to be determined from the boundary conditions. By computing variations, the Lagrange multipliers are derived and the generalised expressions of variational iterations are constructed. Numerical results show that the method is simple...
Quantal description of instabilities in nuclear matter in a stochastic relativistic model
Yılmaz Tüzün, Özgül; Gokalp, A. (2011-10-01)
Spinodal instabilities and early development of density fluctuations are investigated in the stochastic extension of Walecka-type relativistic mean field including non-linear self-interactions of scalar mesons in the quantal framework. Calculations indicate that at low temperatures T = 0-2 MeV, the initial growth of density fluctuations and hence the initial condensation mechanism occur much faster in quantal calculations than those found in the semi-classical framework. However, at higher temperatures T = ...
Kinematic and Kinetostatic Analysis of Parallel Manipulators with Emphasis on Position, Motion, and Actuation Singularities
Özgören, Mustafa Kemal (2019-04-01)
This paper provides a contribution to the singularity analysis of the parallel manipulators by introducing the position singularities in addition to the motion and actuation singularities. The motion singularities are associated with the linear velocity mapping between the task and joint spaces. So, they are the singularities of the relevant Jacobian matrices. On the other hand, the position singularities are associated with the nonlinear position mapping between the task and joint spaces. So, they are enco...
Linearization and optimization of robot dynamics via inertial parameter design
Soylu, Reşit (1996-08-01)
In this article, the concept of linearity number (LN) is introduced to measure the ''linearity'' of the equations of motion of a serial manipulator. This number is computable in closed-form and is an average quantitative index of the degree of linearity of the robot over a specified region in the joint space. The definition is flexible, allowing the user to create custom-made definitions according to his or her specific needs. Using the concept of LN and the developed computer package CADLOR, one can design...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. K. Özgören, “Kinematic analysis of a manipulator with its position and velocity related singular configurations,”
MECHANISM AND MACHINE THEORY
, pp. 1075–1101, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30978.