Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug

2016-08-05
PARSIAN, Maryam
UNSOY, Gozde
Mutlu, Pelin
Yalcin, Serap
Tezcaner, Ayşen
Gündüz, Ufuk
Targeted delivery of anti-cancer drugs increase the efficacy, while decreasing adverse effects. Among various delivery systems, chitosan coated iron oxide nanoparticles (CsMNPs) gained attention with their biocompatibility, biodegradability, low toxicity and targetability under magnetic field. This study aimed to increase the cellular uptake and efficacy of Gemcitabine.
EUROPEAN JOURNAL OF PHARMACOLOGY

Suggestions

Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery
ÜNSOY, GÖZDE; Khodadust, Rouhollah; Yalcin, Serap; Mutlu, Pelin; Gündüz, Ufuk (2014-10-01)
Targeted drug delivery is a promising alternative to overcome the limitations of classical chemotherapy. In an ideal targeted drug delivery system carrier nanoparticles would be directed to the tumor tissue and selectively release therapeutic molecules. As a novel approach, chitosan coated magnetic nanoparticles (CS MNPs) maintain a pH dependent drug delivery which provides targeting of drugs to the tumor site under a magnetic field. Among various materials, chitosan has a great importance as a pH sensitive...
Investigation of the Therapeutic Effects of Palbociclib Conjugated Magnetic Nanoparticles on Different Types of Breast Cancer Cell Lines
Parsian, Maryam; MUTLU, PELİN; Taghavi Pourianazar, Negar; Yalcin Azarkan, Serap; Gündüz, Ufuk (2023-01-01)
Introduction: Drug targeting and controlled drug release systems in cancer treatment have many advantages over conventional chemotherapy in terms of limiting systemic toxicity, side effects, and overcoming drug resistance. Methods and Results: In this paper, fabricating nanoscale delivery system composed of magnetic nanoparticles (MNPs) covered with poly-amidoamine (PAMAM) dendrimers and using its advantages were fully used to help the chemotherapeutic drug, Palbociclib, effectively reach tumors, specifical...
Poly (I:C)- and doxorubicin-loaded magnetic dendrimeric nanoparticles affect the apoptosis-related gene expressions in MCF-7 cells
Khodadust, Rouhollah; Alpsoy, Aktan; Ünsoy, Gözde; Gündüz, Ufuk (The Scientific and Technological Research Council of Turkey, 2020-8-19)
Use of nanoparticles as drug carrier vectors has great potential to circumvent the limitations associated with chemotherapy, including drug resistance and destructive side effects. For this purpose, magnetic generation 4 dendrimeric nanoparticles were prepared to carry chemotherapeutic agent doxorubicin (G 4-DOX) and immune modulator polyinosinic:polycytidylic acid [Poly(I:C)]. As previously reported, DOX and Poly(I:C) was loaded onto G 4 nanoparticles (PIC-G 4-DOX). Cellular internalization study using con...
Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery
PARSIAN, MARYAM; Mutlu, Pelin; Yalcin, Serap; Tezcaner, Ayşen; Gündüz, Ufuk (2016-12-30)
Tumor-specific delivery of anticancer drugs by magnetic nanoparticles will maximize the efficacy of the drug and minimize side effects, and reduce systemic toxicity. The magnetic core of these nanoparticles provides an advantage for selective drug targeting as they can be targeted to the tumor site and accumulated in cancer cells by means of an external magnetic field. Magnetic nanoparticles can be coated with Polyamidoamine (PAMAM) dendrimer and loaded with drugs. However, biomedical applications of PAMAM ...
Inclusion of celecoxib in the SBA-15 mesoporous silica: drug loading and release property
Eren, Zeynep Seda; Yılmaz, Ayşen; Department of Chemistry (2016)
Mesoporous silica particles have been used to enhance the loading capacity of drugs into the support, increase the solubility of drug and control drug release. In this study, poorly water-soluble, nonsteroidal anti-inflammatory drug with relatively low bioavailability Celecoxib, was used as a model drug in order to determine the drug loading and release properties of silica particles. In order to synthesize SBA15 particles, hydrothermal synthesis method was used, SBA-15 samples were functionalized by post-g...
Citation Formats
M. PARSIAN, G. UNSOY, P. Mutlu, S. Yalcin, A. Tezcaner, and U. Gündüz, “Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug,” EUROPEAN JOURNAL OF PHARMACOLOGY, pp. 121–128, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31022.