Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
MODELING AND KINETICS OF LIGHT-INDUCED PROTON PUMPING OF BACTERIORHODOPSIN RECONSTITUTED LIPOSOMES
Date
1991-09-01
Author
EROGLU, I
ZUBAT, BM
Yücel, Ayşe Meral
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Purple membrane fragments isolated from the cell membrane of the photosynthetic bacteria Halobacterium halobium S.9 strain are incorporated into egg yolk phosphatidylcholine liposomes. Purple membrane contains crystalline patches of a retinal protein called bacteriorhodopsin. Upon illumination, bacteriorhodopsin undergoes a reversible photoreaction in which a proton is released on one side of the membrane and a proton is bound on the other side, thus resulting in an electro-chemical gradient across the membrane. The net rate of proton pumping is the combination of the rates of photoreaction and of simple diffusion of protons across the lipid membrane to compensate for the concentration difference between the two sides of the membrane. A mechanistic model is also proposed for the photoreaction which includes activation, proton dissociation, translocation and association reactions. Activation and translocation of bacteriorhodopsin are considered to be fast, but proton dissociation and association steps are considered to be slow. The resultant rate expression is compared with light on and light off experimental data. The model is in accordance with experimental data for initial pH values around 7.
Subject Keywords
Membrane-bound enzymes
,
Liposomes
,
Biosynthetic membranes
,
Biomembrane analogs
,
Bacteriorhodopsin
URI
https://hdl.handle.net/11511/31043
Journal
JOURNAL OF MEMBRANE SCIENCE
DOI
https://doi.org/10.1016/0376-7388(91)80025-2
Collections
Graduate School of Natural and Applied Sciences, Article