Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nanopatterning of Collagen Scaffolds Improve the Mechanical Properties of Tissue Engineered Vascular Grafts
Date
2009-04-01
Author
Zorlutuna, P.
Elsheikh, A.
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
Tissue engineered constructs with cells growing in an organized manner have been shown to have improved mechanical properties. This can be especially important when constructing tissues that need to perform under load, such as cardiac and vascular tissue. Enhancement of mechanical properties of tissue engineered vascular grafts via orientation of smooth muscle cells by the help of topographical cues have not been reported yet. In the present study, collagen scaffolds with 650, 500, and 332.5 nm wide nanochannels and ridges were designed and seeded with smooth muscle cells isolated from the human saphenous vein. Cell alignment on the construct was shown by SEM and fluorescence microscopy. The ultimate tensile strength (UTS) and Young's modulus of the scaffolds were determined after 45 and 75 days. Alamar Blue assay was used to determine the number of viable cells on surfaces with different dimensioned patterns. Presence of nanopatterns increased the UTS from 0.55 +/- 0.11 to as much as 1.63 +/- 0.46 MPa, a value within the range of natural arteries and veins. Similarly, Young's modulus values were found to be around 4 MPa, again in the range of natural vessels. The study thus showed that nanopatterns as small as 332.5 nm could align the smooth muscle cells and that alignment significantly improved mechanical properties, indicating that nanopatterned collagen scaffolds have the potential for use in the tissue engineering of small diameter blood vessels.
Subject Keywords
Smooth-muscle-cells
,
Pigment epithelial-cells
,
Blood-vessel
,
Arterial prosthesis
,
In-vitro
,
Films
,
Orientation
,
Bypass
,
Growth
,
Construction
URI
https://hdl.handle.net/11511/31168
Journal
BIOMACROMOLECULES
DOI
https://doi.org/10.1021/bm801307y
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells
Karadas, Ozge; Yucel, Deniz; Kenar, Halime; Kose, Gamze Torun; Hasırcı, Vasıf Nejat (2014-07-01)
The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 mu m. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determined to be 234.5 kPa and 127.1 kPa, respectively, prior to in vitro studies. Mesenchymal stem cells (MSCs) obtain...
Magnetic resonance conductivity tensor imaging (MRCTİ) at 3 tesla
Sadighi, Mehdi; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2014)
Electrical conductivity of biological tissues changes with physiological and pathological state of tissue. Therefore, recognizing the changes of the conductivity distribution inside human body, provides unique information about the pathological conditions of internal organs which is not available from other imaging modalities. Magnetic Resonance Electrical Impedance Tomography (MREIT) is an imaging technique to reconstruct the isotropic conductivity distribution of the biological tissues. But most of the bi...
Nanofeatured silk fibroin membranes for dermal wound healing applications
Karahaliloglu, Zeynep; Ercan, Batur; DENKBAŞ, EMİR BAKİ; Webster, Thomas J. (2015-01-01)
As an effort to create the next generation of improved skin graft materials, in this study, we modified the surfaces of a previously investigated material, silk fibroin, using a NaOH alkaline treatment to obtain a biologically inspired nanofeatured surface morphology. Such surfaces were characterized for roughness, energy, and chemistry. In addition, keratinocyte (skin-forming cells) adhesion and proliferation on such nanofeatured silk fibroin wound dressings were studied in an initial attempt to determine ...
Adsorption properties of boron nitride nanotubes
Khan, Saeed Ahmad; Sezgi, Naime Aslı; Balcı, Fatma Suna; Department of Chemical Engineering (2016)
The developments in nanotechnology in last decades have provided use of nanoparticles for many applications in various areas such as electronics, fuel cells, composites, cosmetics, and biomedical. They have excellent mechanical, thermal, and electrical properties. Nanotechnology is one of the fastest growing areas in materials and engineering science and biotechnology. Nanotubes have been one of the most regarded and studied type of nanoparticles up to now. Boron nitride nanotubes (BNNTs) are an important m...
Dielectric Analysis of Changes in Electric Properties of Doxorubicin Resistant K562 Leukemic Cells Through Electrorotation with 3 D Electrodes
Garsha, Bahrieh; Erdem, Murat; Özgür, Ebru; Gündüz, Ufuk; Külah, Haluk (2013-10-31)
In this study, dielectric characterization of multidrug resistant (MDR) K562 human leukemia cells was carried out using a MEMS-based electrorotation (ER) device with 3D electrodes. Different cell populations were utilized, which were resistant to 0.1, 0.3, and 0.5 μM doxorubicin. The ER devices with 3D quadruple electrodes (30 urn in height) were used, in order to eliminate the fringing field effect on the rotation of cells. Signals in phase quadrature were applied to the polynomial electrodes, to induce th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Zorlutuna, A. Elsheikh, and V. N. Hasırcı, “Nanopatterning of Collagen Scaffolds Improve the Mechanical Properties of Tissue Engineered Vascular Grafts,”
BIOMACROMOLECULES
, pp. 814–821, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31168.