Thermal degradation of polythiophene-natural rubber and polythiophene-synthetic rubber conducting polymer composites

Thermal degradation of conducting polymer composites of polythiophene and rubbers was studied by direct and indirect pyrolysis mass spectrometry techniques. The samples were prepared by electrooxidation of polythiophene using natural rubber or synthetic rubber as the insulating matrix. Presence of decomposition products which were not observed during pyrolysis of pure polythiophene and rubbers, and disappearance of rubber-based pyrolysis mass peaks, together with changes in thermal stability and behaviour, may directly be related to a chemical interaction between the components of the composites. The pyrolysis data were used to propose possible polymerization and degradation mechanisms.


Thermal analysis of a new thiophene derivative and its copolymer
Aslan, E.; Toppare, Levent Kamil; Hacaloğlu, Jale (2008-06-01)
Thermal characteristics of a new thiophene derivative, 2-(thiophen-3-yl-)ethyl octanoate (OTE), its homopolymer (POTE), and copolymer with thiophene P(OTE-co-Th) were investigated via pyrolysis mass spectrometry. Thermal degradation of the copolymer started by lose of side chains and thiophene involving products evolved almost in the same temperature range where PTh degradation was detected, at slightly higher temperatures than PTh backbone decomposed during the pyrolysis of POTE. The extent of doping and n...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Pyrolysis mass spectrometry analysis of BF4 - doped polythiophene
Gozet, Tuba; Hacaloğlu, Jale; Önal, Ahmet Muhtar (2004-06-01)
Pyrolysis of electrochemically prepared BF4- doped polythiophene (PTh) by direct insertion probe and Currie point pyrolysis gas chromatography mass spectrometry techniques indicated that thermal decomposition of PTh occurs in two steps. In accordance with literature results, the first step is assigned to the loss of the dopant, and the second step to the degradation of the polymer backbone producing segments of various conjugation lengths. At elevated temperatures, detection of products such as H2S and C2H2...
A pyrolysis mass spectrometry study of polythiophene - Natural rubber and polythiophene - Synthetic rubber conducting polymer composites
Yigit, S.; Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
The thermal behaviors and degradation products of conducting polymer composites prepared by electrooxidation of thiophene using natural rubber or synthetic rubber as the insulating matrix were studied by direct and indirect mass spectrometry techniques. The pyrolysis mass data revealed that a chemical interaction formed between the components of the composites during polymerization. Thermal characteristics of rubbers totally disappeared in the composites indicating presence of some chain scissions leading t...
Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Citation Formats
J. Hacaloğlu, U. Akbulut, and L. K. Toppare, “Thermal degradation of polythiophene-natural rubber and polythiophene-synthetic rubber conducting polymer composites,” Polymer, pp. 5119–5124, 1997, Accessed: 00, 2020. [Online]. Available: