Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrical transport, optical and thermal properties of polyaniline-pumice composites
Date
2011-11-01
Author
YILMAZ, KORAY
Akgoz, A.
Cabuk, M.
Karaagac, H.
KARABULUT, ORHAN
YAVUZ, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
In this study, electrical conductivity, photoconductivity, absorbance and thermal properties of polyaniline (PANI) and polyaniline-pumice composites were investigated. Temperature dependent conductivity and photoconductivity measurements were carried out in the temperature range of 80-400K. The measurements revealed that the dominant conduction mechanisms in polyaniline and 15% pumice doped composite were hopping conduction. The low activation energies calculated for 36% pumice doped composite indicated that this sample has highly defective and degenerate structure due to the high pumice content. Polyaniline and pumice doped composites showed semiconductor behavior with the exponential variation of inverse temperature dependence of electrical conductivity. Photoconductivities of the PANI and PANI-pumice composites under various illumination intensities were studied and it was found for all samples that the conductivity increased with increasing temperature and light intensity, but decreased with increasing pumice content in the structure. Absorbance spectrum has been determined in the wavelength range of 300-700 nm and it was found that the band gap values decreased as the pumice content was increased. Thermogravimetric analysis have shown for all samples that the mass loss has started above around 300 K due to the loss of moisture from the structures. As a result of this work, it was found that polyaniline and polyaniline-pumice composites had low resistivity and high band gaps and could be used as a window layer semiconductor in heterojunction solar cell applications.
Subject Keywords
Composite materials
,
Polymers
,
Semiconductors
,
Electrical conductivity
URI
https://hdl.handle.net/11511/68329
Journal
MATERIALS CHEMISTRY AND PHYSICS
DOI
https://doi.org/10.1016/j.matchemphys.2011.08.017
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Nanocomposites based on blends of polyethylene
Işık, Fatma; Yılmazer, Ülkü; Department of Chemical Engineering (2005)
In this study the effects of compatibilizer type, organoclay type, and the addition order of components on the morphological, thermal, mechanical and flow properties of ternary nanocomposites based on low density polyethylene, LDPE were investigated. As compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate, ethylene/glycidyl methacrylate, and ethylene/butyl acrylate/maleic anhydride; as organoclay Cloisite? 15A, Cloisite? 25A and Cloisite? 30B were used. All samples were prepared by a co-rotating t...
Thermal degradation of polythiophene-natural rubber and polythiophene-synthetic rubber conducting polymer composites
Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
Thermal degradation of conducting polymer composites of polythiophene and rubbers was studied by direct and indirect pyrolysis mass spectrometry techniques. The samples were prepared by electrooxidation of polythiophene using natural rubber or synthetic rubber as the insulating matrix. Presence of decomposition products which were not observed during pyrolysis of pure polythiophene and rubbers, and disappearance of rubber-based pyrolysis mass peaks, together with changes in thermal stability and behaviour, ...
Ternary nanocomposites of high density, linear low density and low density polyethylenes
Uçar, Egemen; Yılmazer, Ülkü; Department of Polymer Science and Technology (2007)
In this study, the effects of organoclay loading, compatibilizer loading and polyethylene type on the morphology, rheology, thermal properties and mechanical properties of polyethylene/compatibilizer/organoclay nanocomposites were investigated. As compatibilizer, terpolymer of ethylene-methacrylate-glycidyl methacrylate (Lotader® AX8900), as organoclay Cloisite® 15A were used. All samples were prepared by a co-rotating twin screw extruder, followed by injection molding. Considering ternary nanocomposites, h...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Mechanical properties of plasma surface-modified calcium carbonate-polypropylene composites
Akovali, G; Akman, MA (Wiley, 1997-02-01)
Calcium carbonate was surface-modified by plasma-polymerized acetylene and the effect of surface modification on the mechanical properties of calcium carbonate-polypropylene composites was investigated. Two different plasma polymerization conditions were selected and applied. Chemical structures of plasma-polymerized acetylene products were identified. Mechanical and thermal properties of the composites prepared were evaluated and the effects of surface modification on the extent of adhesion of filler to th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. YILMAZ, A. Akgoz, M. Cabuk, H. Karaagac, O. KARABULUT, and M. YAVUZ, “Electrical transport, optical and thermal properties of polyaniline-pumice composites,”
MATERIALS CHEMISTRY AND PHYSICS
, pp. 956–961, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68329.