Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nanoparticles Based Drug Delivery Systems to Overcome Multidrug Resistance in Cancer The Role of Membrane Lipids Proteins and Carbohydrates
Date
2016-09-28
Author
Özlüer, Özlem
Yalçın Azarkan, Serap
Gündüz, Ufuk
Metadata
Show full item record
Item Usage Stats
246
views
0
downloads
Cite This
Multidrug resistance (MDR) is a major problem in success of cancer chemotherapy on tumor cell growth, limits the prolonged and effective use of chemotherapy. The use of nanomaterial based drug carriers in cancer treatment offers exciting opportunities to enhance delivery of therapeutics to the tumor site (1). This is also known as targeted drug delivery providing differential distribution of drugs to the tumor site while significantly reducing the overall toxicity. Here, we critically discuss the role of the membrane lipids, protein and carbohydrates in nanoparticle based drug carrier systems in relation to the resistance. Results obtained in recent years indicate the important roles of lipids, proteins, or carbohydrates in regulating membrane pump/channels function, membrane trafficking, signaling transduction pathways, apoptotic pathways, and endocytosis, the primary mechanism of cellular uptake of nanoparticle based drug delivery systems(2). This review highlighted the need for continuing research on the interactions between the nanoparticles and the molecules on the cell membrane to overcome drug resistance.
Subject Keywords
Cancer
,
Membrane lipids
,
Membrane proteins
,
Membrane carbohydrates
,
Multidrug resistance (MDR)
,
Nanoparticles
URI
https://hdl.handle.net/11511/77973
Conference Name
WITAM -2016 2nd International Congress on the World of Technology and Advanced Materials (28 Eylül - 02 Ekim 2016)
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Nanoparticle-based drug delivery in cancer: the role of cell membrane structures
Yalcin, Serap; Ozluer, Ozlem; Gündüz, Ufuk (2016-11-01)
Development of novel drug-delivery systems aims to specifically deliver anticancer drugs to tumor tissues and improve the efficiency of chemotherapy, while minimizing side effects of drugs on healthy tissues and organs. However, drug-delivery systems are confronted by membrane barriers and multiple drug resistance in cancer cells. In recent years, the obtained results indicate an important role of lipids, proteins and carbohydrates in apoptosis, drug transport and the process of cellular uptake of nanoparti...
Synthesis of poly (dl-lactic-co-glycolic acid) coated magnetic nanoparticles for anti-cancer drug delivery
Tansık, Gülistan; Gündüz, Ufuk; Department of Biology (2012)
One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an extern...
Vimentin silencing effect on invasive and migration characteristics of doxorubicin resistant MCF-7 cells
Tezcan, Okan; Gündüz, Ufuk (2014-04-01)
Chemotherapy is one of the well-known treatments in cancer therapy. The effectiveness of chemotherapy is limited by several factors one of which is the emergence of multidrug resistance (MDR). One of the major mechanisms of MDR is the activity of several ATP binding cassette (ABC) transporters that pump drugs out of the cells. Doxorubicin intercalates and inhibits DNA replication; it is a powerful chemotherapeutic agent. However, it causes development of MDR in tumor cells. Vimentin is a type III intermedia...
Multiscale tumor modeling
Ünsal, Serbülent; Acar, Aybar Can; Department of Health Informatics (2014)
Cancer’s complex behavior decreases success rates of the cancer therapies. The usual steps cancer therapy are, deciding phase of the cancer and planing the therapy according to medical guidelines and there is no room or chance for personalized medicine. Simulation systems that use patient specific data as input and up-to-date scientific evidence as business rules has chance to help clinicians for evidence based personalized medicine practice.In this study our aim is creating a basic model to guide researche...
Expression analysis of TOP2A, MSH2 and MLH1 genes in MCF7 cells at different levels of etoposide resistance
Kaplan, Esra; Gündüz, Ufuk (2012-02-01)
Purpose: Development of resistance against anti-cancer drugs is one of the major obstacles of chemotherapy in the treatment of cancer. Etoposide is a topoisomerase II alpha (TOP2A) inhibitor, which is used in the treatment of breast cancer. Alterations in the expression of drug targets or DNA repair genes are among the important resistance mechanisms against TOP2A inhibitors. In this study, expression changes in TOP2A gene and two important mismatch repair (MMR) genes MSH2 and MLH1 were examined in order to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Özlüer, S. Yalçın Azarkan, and U. Gündüz, “Nanoparticles Based Drug Delivery Systems to Overcome Multidrug Resistance in Cancer The Role of Membrane Lipids Proteins and Carbohydrates,” presented at the WITAM -2016 2nd International Congress on the World of Technology and Advanced Materials (28 Eylül - 02 Ekim 2016), Kırşehir, Türkiye, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/77973.