Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of Field-Effect Passivation in Textured and Undiffused Silicon Surfaces
Date
2019-09-13
Author
Turkay, Deniz
Koroglu, Cagil
Yerci, Selçuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
In this work, we present a numerical analysis comparing the field-effect passivation provided by fixed dielectric charges on planar and textured undiffused silicon surfaces. We focus particularly on the ratio of effective surface recombination velocities (S-eff) of planar and textured surfaces (sigma=S-eff,S-textured/S-eff,S-planar) utilizing the same fixed dielectric charge density (Q(f)) under the same injection conditions. To ensure a difference between the space-charge region profiles of textured and planar surfaces, we specifically analyze structures with large aspect ratios and submicron feature sizes. A wide range of Q(f) (1 x 10(7) to 1 x 10(13)cm(-2)) having both negative and positive polarities is covered in the analysis. We show that sigma approximately follows the surface area enhancement for very small and large Q(f), which induce weak band-bending and strong accumulation or inversion conditions, respectively. For moderately large Q(f), on the other hand, sigma shows a stronger deviation from the surface area enhancement. To elucidate the underlying physical mechanisms leading to the nonmonotonous relation between sigma and Q(f), we analyze the electrostatics of opposing charged surfaces. We show that an enhanced field-effect passivation is not realized along a large portion of a textured surface having a large Q(f) due to the significant carrier localization near the surface.
Subject Keywords
SI-SIO2 Interface
,
Recombination
,
Parameters
,
Stability
,
Stacks
,
Layers
,
Light
,
Model
,
Vapor
,
QSS
URI
https://hdl.handle.net/11511/31359
Journal
PHYSICAL REVIEW APPLIED
DOI
https://doi.org/10.1103/physrevapplied.12.034026
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Analysis and Elimination of the Capacitive Feedthrough Current on Electrostatically Actuated and Sensed Resonance-Based MEMS Sensors
Kangul, Mustafa; Aydin, Eren; Gokce, Furkan; Zorlu, Ozge; Külah, Haluk (2017-12-01)
This paper presents the investigation of two different capacitive feedthrough current elimination methods with an analysis of the effect of the capacitive feedthrough current on the resonance characteristics of electrostatically actuated and sensed resonant MEMS sensors. Electrostatically actuated and sensed resonators have various applications, such as accelerometers, gyroscopes, mass sensors, and temperature sensors. In most of these applications, as sensitivity increases, gain decreases. The capacitive f...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV
Khachatryan, V.; et. al. (2017-03-01)
The cross section of top quark-antiquark pair production in proton-proton collisions at root s = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 fb(-1). The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in...
FIRST-PRINCIPLES CALCULATIONS FOR THE STRUCTURAL AND ELECTRONIC PROPERTIES OF ScxAl1-xN ALLOYS
Mohammad, Rezek; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2013-10-01)
The first-principles calculations based on Density Functional Theory (DFT) within generalized gradient approximation (GGA) of Engel-Vosko-Perdew-Wang and modified exact exchange potential of Becke-Johnson have been introduced for the structural and electronic properties of the ScxAl1-xN alloys, respectively. The present lattice constants calculated for the ScAlN alloys and the end compounds (AlN and ScN) are found to be in very good agreement with the available experimental and theoretical ones. The stable ...
ANALYSIS OF MILLIMETER WAVE-GUIDES ON ANISOTROPIC SUBSTRATES USING THE 3-DIMENSIONAL TRANSMISSION-LINE MATRIX-METHOD
BULUTAY, C; PRASAD, S (1993-06-01)
Three-dimensional condensed asymmetrical node, variable grid, transmission-line matrix (TLM) method has been used in analyzing several millimeter waveguides on anisotropic substrates. The dispersion characteristics of image guides together with field and energy confinement properties at millimeter-wave frequencies have been investigated. Edge coupled microstrip line on a uniaxial substrate is analyzed for the even and odd mode dispersion characteristics. Finally the same analysis is repeated for bilateral f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Turkay, C. Koroglu, and S. Yerci, “Analysis of Field-Effect Passivation in Textured and Undiffused Silicon Surfaces,”
PHYSICAL REVIEW APPLIED
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31359.