Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in Acid Orange 52 decolorization
Date
2009-04-01
Author
Yamak, Ozgur
KALKAN, NİGAR
AKSOY, SERPİL
ALTINOK, HAYDAR
Hasırcı, Nesrin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Laccase enzyme (L) from Trametes versicolor was entrapped in three hydrogel structures namely poly(acrylamide-N-isopropylacrylamide), P(AAm-NIPA), and semi-interpenetrating networks of poly(-acrylamide)/alginate, P(AAm)/Alg, and poly(acrylamide-N-isopropylacrylamide)/alginate, P(AAm-NIPA)/Alg. The optimum temperatures for free and all immobilized systems were found to be 40 degrees C. For free and immobilized laccase systems of P(AAm-NIPA)-L, P(AAm)/Alg-L and P(AAm-NIPA)/Alg-L, K-m values were found to be 6.7 x 10(-3), 8.8 x 10(-2), 5.5 x 10(-2) and 1,8 x 10(-2) mM: V-max values were calculated as 1.8 x 10(-3). 2.5 x 10(-2), 1.5 x 10(-2) and 6.1 x 10(-3) mM min(-1), respectively. For free and the same immobilized systems, the enzymes retained 42%, 91%. 79% and 86% of their initial activities at the end of 56 days of storage. After using the mentioned immobilized systems repeatedly 10 times, they retained 77%, 71% and 84% of their original activities, respectively. For free and the same immobilized systems, decolorization of Acid Orange 52 (AO52) in 6 h were found to be 63%, 50%, 48% and 66%, respectively. Addition of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS, into the assay medium increased these values LIP to 73%, 73%, 74% and 75%, respectively.
Subject Keywords
Semi-interpenetrating polymer networks
,
Enzyme immobilization
,
Laccase
,
Entrapment
,
Decolorization
,
Acid orange 52
URI
https://hdl.handle.net/11511/31363
Journal
PROCESS BIOCHEMISTRY
DOI
https://doi.org/10.1016/j.procbio.2008.12.008
Collections
Graduate School of Natural and Applied Sciences, Article