Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production by Response Surface Methodology
Date
2015-04-27
Author
Akman, Melih Can
Bayramoğlu, Tuba Hande
Gündüz, Ufuk
EROĞLU, İNCİ
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Biohydrogen, which can be produced by dark fermentation and photofermentation processes, is a renewable and clean approach for hydrogen production. In this study, it was aimed to determine the operational conditions which satisfy the highest photofermentative hydrogen production rate in batch reactors. To that purpose, the effects of initial substrate concentration, initial volatile suspended solids (VSS) concentration and light intensity on photofermentation process, and their interactive effects were investigated by using Response Surface Methodology (RSM). The photofermentative process was followed by using pure strain of purple non-sulfur (PNS) bacteria: Rhodobacter capsulatus DSM 1710. RSM results revealed that the highest hydrogen production rate of 1.04 mmol/L-reactor.h can be obtained when acetate concentration, initial R. capsulatus concentration and the light intensity values were 35.35 mM, 0.27 g VSS/L and 263.6 W/m(2) (3955 lux), respectively. Optimum Substrate/Initial biomass concentration ratio (S/X-o) was found as 7.7 g acetate/g VSS (8.3 g Chemical Oxygen Demand/g VSS). Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Biohydrogen
,
COD-chemical oxygen demand
,
Photofermentation
,
Rhodobacter capsulatus
,
Response surface methodology
URI
https://hdl.handle.net/11511/31573
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2015.02.093
Collections
Graduate School of Natural and Applied Sciences, Article