Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Implementation and analysis of temperature control strategies for outdoor photobiological hydrogen production
Date
2016-12-01
Author
ANDROGA, DOMINIC DEO
UYAR, BAŞAR
Koku, Harun
EROĞLU, İNCİ
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
For outdoor photobiological hydrogen production, the effective control of temperature in photobioreactors is a challenge. In this work, an internal cooling system for outdoor tubular photobioreactors was designed, built, and tested. The temperatures in the reactors with bacteria were consistently higher than those without bacteria, and were also strongly influenced by solar irradiation and ambient air temperature. The cooling protocol applied successfully kept the reactor temperatures below the threshold limit (38 A degrees C) required for the bioprocess and provided a uniform distribution of temperature along the reactor tube length. The biomass growth and hydrogen production were similar in the reactors cooled co-currently and counter-currently. The biomass growth rate was 0.1 l/h, the maximum hydrogen production rate was 1.28 mol/m(3)/h, and the overall hydrogen yield obtained was 20 %. The change in the biomass was fitted using the logistic model while cumulative hydrogen production was fitted using the modified Gompertz equation.
Subject Keywords
Photofermentation
,
Biohydrogen
,
Tubular reactor
,
Temperature control
,
Rhodobacter capsulatus
URI
https://hdl.handle.net/11511/40205
Journal
BIOPROCESS AND BIOSYSTEMS ENGINEERING
DOI
https://doi.org/10.1007/s00449-016-1665-y
Collections
Department of Chemical Engineering, Article