Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Reduced order optimal control of the convective FitzHugh-Nagumo equations
Download
index.pdf
Date
2020-02-15
Author
Karasözen, Bülent
KÜÇÜKSEYHAN, TUĞBA
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
99
downloads
Cite This
In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consist of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest.
Subject Keywords
FitzHugh-Nagumo equation
,
Optimal control
,
Discontinuous Galerkin method
,
Proper orthogonal decomposition
,
Discrete empirical interpolation
,
Dynamic mode decomposition
URI
https://hdl.handle.net/11511/31649
Journal
COMPUTERS & MATHEMATICS WITH APPLICATIONS
DOI
https://doi.org/10.1016/j.camwa.2019.08.009
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Reduced Order Optimal Control Using Proper Orthogonal Decomposition Sensitivities
Karasözen, Bülent (2015-06-02)
In general, reduced-order model (ROM) solutions obtained using proper orthogonal decomposition (POD) at a single parameter cannot approximate the solutions at other parameter values accurately. In this paper, parameter sensitivity analysis is performed for POD reduced order optimal control problems (OCPs) governed by linear diffusion-convection-reaction equations. The OCP is discretized in space and time by discontinuous Galerkin (dG) finite elements. We apply two techniques, extrapolating and expanding the...
Model order reduction for pattern formation in reaction-diffusion systems
Karasözen, Bülent; Küçükseyhan, Tuğba; Mülayim, Gülden (null; 2017-09-22)
We compare three reduced order modelling (ROM) techniques: the proper orthogonal decomposition (POD), discrete empirical interpolation (DEIM) [2], and dynamical mode decomposition (DMD) [1] to reaction diusion equations in biology. The formation of patterns in reaction-diusion equations require highly accurate solutions in space and time and therefore require large computational time to reach the steady states. The three reduced order methods are applied to the diusive FitzHugh-Nagumo equation [3] and th...
Energy preserving model order reduction of the nonlinear Schrodinger equation
Karasözen, Bülent (2018-12-01)
An energy preserving reduced order model is developed for two dimensional nonlinear Schrodinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orth...
Model Order Reduction for Pattern Formation in FitzHugh-Nagumo Equations
Karasözen, Bülent; Kucukseyhan, Tugba (2015-09-18)
We developed a reduced order model (ROM) using the proper orthogonal decomposition (POD) to compute efficiently the labyrinth and spot like patterns of the FitzHugh-Nagumo (FNH) equation. The FHN equation is discretized in space by the discontinuous Galerkin (dG) method and in time by the backward Euler method. Applying POD-DEIM (discrete empirical interpolation method) to the full order model (FOM) for different values of the parameter in the bistable nonlinearity, we show that using few POD and DEIM modes...
Time-Space Adaptive Method of Time Layers for the Advective Allen-Cahn Equation
UZUNCA, MURAT; Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse (2015-09-18)
We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with nondivergence-free velocity fields. Numerical simulations for convection dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karasözen and T. KÜÇÜKSEYHAN, “Reduced order optimal control of the convective FitzHugh-Nagumo equations,”
COMPUTERS & MATHEMATICS WITH APPLICATIONS
, pp. 982–995, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31649.