Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern
Date
2011-02-01
Author
Iseri, Ozlem Darcansoy
Kars, Meltem Demirel
Arpaci, Fikret
Atalay, Can
Pak, Isin
Gündüz, Ufuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
0
downloads
Cite This
Purpose: Multidrug resistance is resistance to structurally unrelated anticancer agents. Large-scale expression analysis by using high-density oligonucleotide microarrays may provide information about new candidate genes contributing to MDR. This study demonstrates alterations in expression levels of several genes related to epithelial-mesenchymal transition (EMT) in paclitaxel, docetaxel, and doxorubicin resistant MCF-7 cells.
Subject Keywords
Multidrug resistance
,
EMT
,
Breast cancer
URI
https://hdl.handle.net/11511/31655
Journal
BIOMEDICINE & PHARMACOTHERAPY
DOI
https://doi.org/10.1016/j.biopha.2010.10.004
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Protein kinase D2 silencing reduced motility of doxorubicin-resistant MCF7 cells
Alpsoy, Aktan; Gündüz, Ufuk (2015-06-01)
Success of chemotherapy is generally impaired by multidrug resistance, intrinsic resistance, or acquired resistance to functionally and structurally irrelevant drugs. Multidrug resistance emerges via distinct mechanisms: increased drug export, decreased drug internalization, dysfunctional apoptotic machinery, increased DNA damage repair, altered cell cycle regulation, and increased drug detoxification. Several reports demonstrated that multidrug resistance is a multifaceted problem such that multidrug resis...
Reversal of breast cancer resistance protein mediated multidrug resistance in MCF7 breast adenocarcinoma cell line
Urfalı, Çağrı; Gündüz, Ufuk; Department of Biology (2011)
Resistance to various chemotherapeutic agents is a major problem in success of cancer chemotherapy. One of the primary reasons of development of multidrug resistance (MDR) is the overexpression of ATP binding cassette (ABC) transporter proteins. Breast cancer resistance protein (BCRP) belongs to ABC transporter family and encoded by ABCG2 gene. BCRP is mainly expressed in MDR1 (P-glycoprotein) lacking breast cancer cells. Overexpression of BCRP leads to efflux of chemotherapeutic agents at higher rates, the...
Reversal of multidrug resistance in mcf-7 breast adenocarcinoma cell line by silencing interleukin 6 with RNA interference
Çakmak, Neşe; Gündüz, Ufuk; Department of Biology (2013)
Multidrug resistance (MDR) in cancer is characterized by development of resistance to several unrelated drugs upon long time administration of a certain type of chemotherapeutic agent. In doxorubicin resistant MCF-7 cell line, resistance is developed mainly by upregulation of MDR1 gene which encodes an ABC transporter protein known as P-glycoprotein. Interleukin 6 (IL-6) is a cytokine which acts as a growth factor for certain cell types including some cancer cells. IL-6 is found at high levels in cancer pat...
Drug Resistant MCF-7 Cell Lines Also Developed Cross-Resistance to Structurally Unrelated Anticancer Agents
Iseri, Ozlem D.; Kars, Meltem D.; Eroglu, Seckin; Gündüz, Ufuk (2009-03-01)
The cells developing resistance to an applied drug may also present cross-resistance to other anticancer drugs which are not applied. In this study, the development of cross-resistance in paclitaxel (MCF-7/Pac), docetaxel (MCF-7/Doc), vincristine (MCF-7/Vinc) and doxorubicin (MCF-7/Dox) resistant MCF-7 cells to selective anticancer drugs, tamoxifen and all trans-retinoic acid (ATRA) were investigated. Combined antiproliferative effects of these drugs in different combinations were also evaluated by checkerb...
Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms
Alpsoy, Aktan; Yasa, Seda; Gündüz, Ufuk (2014-04-01)
Purpose: Acquired or intrinsic drug resistance is one of the major handicaps in the success of chemotherapy. Etoposide is a topoisomerase II poison widely used in chemotherapy. Similar to other topoisomerase inhibitors and DNA damaging agents, resistance to etoposide may arise as a result of alterations in target expression and activity, increased drug efflux and alterations in DNA damage response mechanisms. Here, we tested the involvement of such mechanisms in etoposide-resistant MCF-7 breast cancer cells.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. D. Iseri, M. D. Kars, F. Arpaci, C. Atalay, I. Pak, and U. Gündüz, “Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern,”
BIOMEDICINE & PHARMACOTHERAPY
, pp. 40–45, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31655.