Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Speeding up Curve25519 using Toeplitz Matrix-vector Multiplication
Date
2018-01-24
Author
Taskin, Halil Kemal
Cenk, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
344
views
0
downloads
Cite This
This paper proposes a new multiplication algorithm over F-2(255)-19 where the de-facto standard Curve25519 [2] algorithm is based on. Our algorithm for the underlying finite field multiplication exploits the Toeplitz matrix-vector multiplication and achieves salient results. We have used a new radix representation that is infeasible when used with schoolbook multiplication techniques but has notable advantages when used with Toeplitz matrix-vector multiplication methods. We present the new algorithm and discuss the comparison and implementation details. In addition, we evaluate the delay complexity of four-core almost embarrassingly parallel implementation of our algorithm when computations are performed using multi-core systems.
Subject Keywords
Elliptic curve cryptography
,
Toeplitz matrix-vector multiplication
,
curve25519
URI
https://hdl.handle.net/11511/31681
DOI
https://doi.org/10.1145/3178291.3178292
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
A New Algorithm for Residue Multiplication Modulo 2(521)-1
Ali, Shoukat; Cenk, Murat (2016-12-02)
We present a new algorithm for residue multiplication modulo the Mersenne prime p = 2(521) - 1 based on the Toeplitz matrix-vector product. For this modulus, our algorithm yields better result in terms of the total number of operations than the previously known best algorithm of Granger and Scott presented in Public Key Cryptography (PKC) 2015. We have implemented three versions of our algorithm to provide an extensive comparison - according to the best of our knowledge with respect to the well-known algori...
Faster Residue Multiplication Modulo 521-bit Mersenne Prime and an Application to ECC
Ali, Shoukat; Cenk, Murat (2018-08-01)
We present faster algorithms for the residue multiplication modulo 521-bit Mersenne prime on 32- and 64-bit platforms by using Toeplitz matrix-vector product. The total arithmetic cost of our proposed algorithms is less than that of existing algorithms, with algorithms for 64- and 32-bit residue multiplication giving the best timing results on our test machine. The transition from 64- to 32-bit implementation is full of challenges because the number of limbs doubles and the limbs' bitlengths are cut in half...
Faster Montgomery modular multiplication without pre-computational phase for some classes of finite fields
Akleylek, Sedat; Cenk, Murat; Özbudak, Ferruh (2010-09-24)
In this paper, we give faster versions of Montgomery modular multiplication algorithm without pre-computational phase for GF(p) and GF(2 m ) which can be considered as a generalization of [3], [4] and [5]. We propose sets of moduli different than [3], [4] and [5] which can be used in PKC applications. We show that one can obtain efficient Montgomery modular multiplication architecture in view of the number of AND gates and XOR gates by choosing proposed sets of moduli. We eliminate precomputational phase wi...
Improved Polynomial Multiplication Algorithms over Characteristic Three Fields and Applications to NTRU Prime
Yeniaras, Esra; Cenk, Murat (2022-01-01)
This paper introduces a new polynomial multiplication algorithm which decreases the arithmetic complexity and another modified algorithm that speeds up the implementation run-time over the characteristic three fields. We first introduce a new polynomial multiplication algorithm using a 4-way split approach and observe that its asymptotic arithmetic complexity is better than Bernstein’s 3-way method for characteristic three fields. We then define an unbalanced split version a 5-way split method which is fast...
Some new results on binary polynomial multiplication
Cenk, Murat (2015-11-01)
This paper presents several methods for reducing the number of bit operations for multiplication of polynomials over the binary field. First, a modified Bernstein's 3-way algorithm is introduced, followed by a new 5-way algorithm. Next, a new 3-way algorithm that improves asymptotic arithmetic complexity compared to Bernstein's 3-way algorithm is introduced. This new algorithm uses three multiplications of one-third size polynomials over the binary field and one multiplication of one-third size polynomials ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. K. Taskin and M. Cenk, “Speeding up Curve25519 using Toeplitz Matrix-vector Multiplication,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31681.