Computerized scar detection on renal cortical scintigraphy images

Mumcuoğlu, Ünal Erkan
Aslan, Mehmet
Sener, Emre
Objective Renal cortical scintigraphy is a well-established functional imaging technique for visual analysis of radiopharmaceutical tracer distribution. However, the visual evaluation is subjective, causing interobserver variability, especially in a quantifiable number of scars. The purpose of this study was to develop new computerized methods in renal cortical scintigraphy image interpretation, particularly addressing activity distribution and cortex continuity (scars).


Deep learning for the classification of bipolar disorder using fNIRS measurements
Evgin, Haluk Barkın; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2021-2-3)
Functional Near-Infrared Spectroscopy (fNIRS) is a neural imaging method that is proved to be prominent in the classification of psychiatric disorders, and assertive accuracy results are being obtained using fNIRS. High temporal resolution, feasibility, and partial endurance to head movements are the traits that are highlighting fNIRS among other imaging methods. fNIRS data is a one dimensional multi-channeled time series. In this thesis, bipolar disorder is classified using some state of the art deep learn...
Multi-subject brain decoding using deep learning techniques
Velioğlu, Burak; Yarman Vural, Fatoş Tunay; Ertekin Bolelli, Şeyda; Department of Computer Engineering (2016)
In this study, a new method is proposed for analyzing and classifying images obtained by functional magnetic resonance imaging (fMRI) from multiple subjects. Considering the multi level structure of the brain and success of deep learning architectures on extracting hierarchical representations from raw data, these architectures are used in this thesis. Initially, the S500 data set collected in the scope of Human Connectome Project (HCP) is used to train formed deep neural networks in an unsupervised fashion...
Fast and accurate semiautomatic haptic segmentation of brain tumor in 3D MRI images
Latifi-Navid, Masoud; Bilen, Murat; Konukseven, Erhan İlhan; Doğan, Musa; Altun, Adnan (The Scientific and Technological Research Council of Turkey, 2016-01-01)
In this study, a novel virtual reality-based interactive method combined with the application of a graphical processing unit (GPU) is proposed for the semiautomatic segmentation of 3D magnetic resonance imaging (MRI) of the brain. The key point of our approach is to use haptic force feedback guidance for the selection of seed points in a bounded volume with similar intensity and gradient. For the automatic determination of a bounded volume of segmentation in real time, parallel computation on the GPU is use...
Analyzing the Information Distribution in the fMRI Measurements by Estimating the Degree of Locality
Onal, Itir; Ozay, Mete; Firat, Orhan; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-07-07)
In this study, we propose a new method for analyzing and representing the distribution of discriminative information for data acquired via functional Magnetic Resonance Imaging (fMRI). For this purpose, we form a spatially local mesh with varying size, around each voxel, called the seed voxel. The relationship among each seed voxel and its neighbors is estimated using a linear regression model by minimizing the square error. Then, we estimate the optimal mesh size that represents the connections among each ...
An Information theoretic representation of brain connectivity for cognitive state classification using functional magnetic resonance imaging
Önal, Itır; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2013)
In this study, a new method for analyzing and representing the discriminative information, distributed in functional Magnetic Resonance Imaging (fMRI) data, is proposed. For this purpose, a local mesh with varying size is formed around each voxel, called the seed voxel. The relationships among each seed voxel and its neighbors are estimated using a linear regression equation by minimizing the expectation of the squared error. This squared error coming from linear regression is used to calculate various info...
Citation Formats
Ü. E. Mumcuoğlu, M. Aslan, E. Sener, and Ö. UĞUR, “Computerized scar detection on renal cortical scintigraphy images,” NUCLEAR MEDICINE COMMUNICATIONS, pp. 1070–1078, 2011, Accessed: 00, 2020. [Online]. Available: