Kose, Kivanc
Yılmaz, Erdal
In this paper a new Digital Elevation Map (DEM) image compression algorithm is proposed. DEM image can be threated as a grayscale image, whose pixel values are the elevation values of the map points. The grayscale DEM image is compressed using an adaptive wavelet based image compression algorithm. The method, which is an extension of the progressive mesh compression takes advantage of the multiresolution property of the wavelets while coding the map images. This makes it possible to decode different resolutions of the map from the encoded bit stream providing a multiresolution display of a given map. Experimental results are presented.


Efficient algorithms for convolutional inverse problems in multidimensional imaging
Doğan, Didem; Öktem, Figen S.; Department of Electrical and Electronics Engineering (2020)
Computational imaging is the process of indirectly forming images from measurements using image reconstruction algorithms that solve inverse problems. In many inverse problems in multidimensional imaging such as spectral and depth imaging, the measurements are in the form of superimposed convolutions related to the unknown image. In this thesis, we first provide a general formulation for these problems named as convolutional inverse problems, and then develop fast and efficient image reconstruction algorith...
Image fusion for improving spatial resolution of multispectral satellite images
Ünlüsoy, Deniz; Süzen, Mehmet Lütfi; Department of Geological Engineering (2013)
In this study, four different image fusion techniques have been applied to high spectral and low spatial resolution satellite images with high spatial and low spectral resolution images to obtain fused images with increased spatial resolution, while preserving spectral information as much as possible. These techniques are intensity-hue-saturation (IHS) transform, principle component analysis (PCA), Brovey transform (BT), and Wavelet transform (WT) image fusion. Images used in the study belong to Çankırı reg...
End-to-end learned image compression with conditional latent space modelling for entropy coding
Yeşilyurt, Aziz Berkay; Kamışlı, Fatih; Department of Electrical and Electronics Engineering (2019)
This thesis presents a lossy image compression system based on an end-to-end trainable neural network. Traditional compression algorithms use linear transformation, quantization and entropy coding steps that are designed based on simple models of the data and are aimed to be low complexity. In neural network based image compression methods, the processing steps, such as transformation and entropy coding, are performed using neural networks. The use of neural networks enables transforms or probability models...
Error analysis and testing of DRM for frame cameras
Bettemir, Oe. H.; Karslıoğlu, Mahmut Onur; Friedrich, J. (2007-06-16)
A new Differential Rectification Method (DRM) for frame cameras is proposed by Karslioglu and Friedrich [1] for the generation of orthoimages from monoscopic digital images which map every pixel onto a curved surface of reference frame i.e. WGS84. The ellipsoidal geodetic coordinates, of each pixel are calculated directly under the condition that a precise enough elevation model is available avoiding additional earth curvature corrections after the rectification. In this paper, convergence of the differenti...
Automatic building extraction from high resolution satellite images for map updating: A model based approach
San, D. Koc; TÜRKER, MUSTAFA (2007-10-12)
An approach was developed for automatically updating the buildings of an existing vector database from high resolution satellite images using spectral image classification, Digital Elevation Models (DEM) and the model-based extraction techniques. First, the areas that contain buildings are detected using spectral image classification and the normalized Digital Surface Model (nDSM). The classified output provides the shapes and the approximate locations of the buildings. However, those buildings that have si...
Citation Formats
K. Kose, E. Yılmaz, and A. E. ÇETİN, “PROGRESSIVE COMPRESSION OF DIGITAL ELEVATION DATA USING MESHES,” 2009, Accessed: 00, 2020. [Online]. Available: