Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits

2009-01-01
Moore, Tommy S.
Mullaugh, Katherine. M.
Holyoke, Rebecca R.
Madison, Andrew S.
Yücel, Mustafa
Luther, George W.
A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O-2, nutrients (N and P), micronutrients (metals), pCO(2), dissolved inorganic carbon (DIC) pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only, one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water miss should be targeted for further development.
ANNUAL REVIEW OF MARINE SCIENCE

Suggestions

Biological properties of extracellular vesicles and their physiological functions
Yanez-Mo, Maria; et. al. (2015-01-01)
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance ...
Biological hydrogen production from olive mill wastewater and its applications to bioremediation
Eroğlu, Ela; Eroğlu, İnci; Department of Chemical Engineering (2006)
Hydrogen production by photosynthetic bacteria occurs under illumination in the presence of anaerobic atmosphere from the breakdown of organic substrates, which is known as photofermentation. In this study, single-stage and two-stage process development were investigated for photofermentative hydrogen production from olive mill wastewater by Rhodobacter sphaeroides O.U.001 within indoor and outdoor photobioreactors. It was proven that diluted olive mill wastewater (OMW) could be utilized for photobiological...
Warming Effects on Periphyton Community and Abundance in Different Seasons Are Influenced by Nutrient State and Plant Type: A Shallow Lake Mesocosm Study
Hao, Beibei; Wu, Haoping; Zhen, Wei; Jo, Hyunbin; Cai, Yanpeng; Jeppesen, Erik; Li, Wei (Frontiers Media SA, 2020-4-9)
Periphyton plays an important role in lake ecosystems processes, especially at low and intermediate nutrient levels where periphyton contribution to primary production can be similar to or exceed that of phytoplankton. Knowledge of how periphyton responds to key drivers such as climate change and nutrient enrichment is, therefore, crucial. We conducted a series of mesocosm experiments over four seasons to elucidate the responses of periphyton communities to nutrient (low and high, TN-0.33 mg L-1 TP-7.1 mu g...
Modeling and simulation of photobioreactors for biological hydrogen production
Androga, Dominic Deo; Eroğlu, İnci; Uyar, Başar; Department of Biotechnology (2014)
In applications of photofermentative hydrogen production, maintaining optimal temperature, feed composition, pH range and light intensity is the most critical objective for growth and proper functioning of the photosynthetic bacteria. Response Surface Methodology was applied to optimize temperature and light intensity for indoor hydrogen production using Rhodobacter capsulatus. Surface and contour plots of the regressions models developed revealed a maximum hydrogen production rate of 0.566 mol H2/m3/h at 2...
Direct hydrothermal synthesis of palladium-incorporated silicate-structured mesoporous catalysts
Sener, Canan; Doğu, Timur; Dogu, Guelsen (2007-01-01)
Pd-Si-structured novel mesoporous nanocomposite catalytic materials, having quite high Pd/Si ratios, were synthesized by an acidic direct hydrothermal synthesis route. The nanocomposite catalytic materials were then characterized by XRD, XPS, EDS, nitrogen adsorption, and SEM techniques. Unlike MCM-41, the XRD patterns indicated a rather wide d((100)) band at a 2 theta value of about 1.9. The materials, with very high Pd/Si wt ratios between 1.43 and 2.66, were synthesized and had BJH surface area values be...
Citation Formats
T. S. Moore, K. M. Mullaugh, R. R. Holyoke, A. S. Madison, M. Yücel, and G. W. Luther, “Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits,” ANNUAL REVIEW OF MARINE SCIENCE, pp. 91–115, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31961.