Moving mesh discontinuous Galerkin methods for PDEs with traveling waves

Download
2017-01-01
UZUNCA, MURAT
Karasözen, Bülent
Kucukseyhan, T.
In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlinear partial differential equations (PDEs) with traveling wave solutions. The moving mesh strategy for one dimensional PDEs is based on the rezoning approach which decouples the solution of the PDE from the moving mesh equation. We show that the dG moving mesh method is able to resolve sharp wave fronts and wave speeds accurately for the optimal, arc-length and curvature monitor functions. Numerical results reveal the efficiency of the proposed moving mesh dG method for solving Burgers', Burgers'-Fisher and Schlogl (Nagumo) equations.
APPLIED MATHEMATICS AND COMPUTATION

Suggestions

Time-Space Adaptive Method of Time Layers for the Advective Allen-Cahn Equation
UZUNCA, MURAT; Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse (2015-09-18)
We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with nondivergence-free velocity fields. Numerical simulations for convection dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
Average Vector Field Splitting Method for Nonlinear Schrodinger Equation
Akkoyunlu, Canan; Karasözen, Bülent (2012-05-02)
The energy preserving average vector field integrator is applied to one and two dimensional Schrodinger equations with symmetric split-step method. The numerical results confirm the long-term preservation of the Hamiltonians, which is essential in simulating periodic waves.
Optimal control of convective FitzHugh-Nagumo equation
Uzunca, Murat; Kucukseyhan, Tugba; Yücel, Hamdullah; Karasözen, Bülent (2017-05-01)
We investigate smooth and sparse optimal control problems for convective FitzHugh Nagumo equation with traveling wave solutions in moving excitable media. The cost function includes distributed space time and terminal observations or targets. The state and adjoint equations are discretized in space by symmetric interior point Galerkin (SIPG) method and by backward Euler method in time. Several numerical results are presented for the control of the traveling waves. We also show numerically the validity of th...
Energy preserving methods for lattice equations
Erdem, Özge; Karasözen, Bülent (2010-11-27)
Integral preserving methods, like the averaged vector field, discrete gradient and trapezoidal methods are to Poisson systems. Numerical experiments on the Volterra equations and integrable discretization of the nonlinear Schrodinger equation are presented.
On General Form of Tanh Method and Its Application to Medical Problems
Ali, Hamidoglu (2016-09-02)
The tanh method is used to compute travelling waves solutions of one-dimensional non-linear wave and evolution equations. The technique is based on seeking travelling wave solutions in the form of a finite series in tanh. However, the mentioned method is not always efficient method to solve some types of one dimensional non-linear partial differential equations in more general sense. In this article, we construct new general transformation of tanh function which is more effective in the sense of getting gen...
Citation Formats
M. UZUNCA, B. Karasözen, and T. Kucukseyhan, “Moving mesh discontinuous Galerkin methods for PDEs with traveling waves,” APPLIED MATHEMATICS AND COMPUTATION, pp. 9–18, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32212.