Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effect of N-methylimidazole and 3,5-dimethylpyrazole ligands on the polymerization of di(2,6-dichlorophenolato) Cu(II)/Co(II) complexes in the solid state
Date
2004-03-15
Author
Baştürkmen, M.
Hacaloğlu, Jale
Kisakürek, D.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
The polymerization of 2,6-dichlorophenol (DCPH) was achieved through the thermal decomposition of copper complexes of DCPH with N-methylimidazole (NMIz) and 3,5-dimethylpyrazole (DMPz) ligands. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), mass spectrometry, ultraviolet-visible spectroscopy, diffuse reflectance spectroscopy, magnetic susceptibility balance, electron spin resonance, X-ray analysis, and elemental analysis were used to characterize the complexes. The polymerization was achieved either in the solid state or in the melt. The structural analyses were performed with FTIR and NMR spectroscopy analyses. The glass-transition temperatures were determined by DSC, and the intrinsic viscosities were determined by viscosimetry. The effects of the temperature and time on the conversion percentage and viscosity of the polymers were examined. Varying the decomposition temperature during a 3-h scan showed that the DMPz complex of Cu decomposed at lower temperatures than the NMIz complex, whereas the NMIz complex yielded a higher conversion to the polymer. Complexes of DCPH with NMIz and DMPz ligands produced 1,2- and 1,4-addition products, respectively.
Subject Keywords
Solid-state polymerization
,
Transition metal chemistry
URI
https://hdl.handle.net/11511/32251
Journal
Journal of Applied Polymer Science
DOI
https://doi.org/10.1002/app.13541
Collections
Graduate School of Natural and Applied Sciences, Article