Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulating nutrient uptake dynamics in plankton models: A case study for the cilician basin marine ecosystem
Date
2020-01-01
Author
Akoğlu, Ekin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
239
views
0
downloads
Cite This
The primary productivity in the Cilician Basin is severely constrained by phosphorus limitation due to high N:P ratios in the external nutrient inputs. Therefore, special attention is required when the dynamics of plankton is modelled. Acknowledging that mathematical formulation of nutrient uptake by phytoplankton in ecosystem models is crucial as it determines the degree of realism of the representation of biogeochemical dynamics, a plankton model was developed by utilising two widely adopted approaches; i) Monod nutrient uptake kinetics, and ii) Droop nutrient uptake kinetics, to delineate the seasonality of phytoplankton in an attempt to establish a mechanistic biogeochemical model of the Cilician Basin. The model was validated against field data from Erdemli Time Series stations in the region and differences between the approaches were compared. The model successfully simulated the phosphorus limitation in the basin; however, the scenario with Droop kinetics had a better fit to the field data. Both scenarios reproduced the primary productivity in the region. Overall, the results indicated that implementation of Monod kinetics generally sufficed to represent the seasonality of phytoplankton, whereas in environments with severe temporal nutrient scarcity, i.e. the Cilician Basin, implementation of Droop kinetics is required to represent the phytoplankton dynamics more realistically.
Subject Keywords
Ecological modelling
,
Biogeochemistry
,
Cilician basin
,
Primary production
,
Nutrient uptake kinetics
URI
https://hdl.handle.net/11511/32492
Journal
Turkish Journal of Fisheries and Aquatic Sciences
DOI
https://doi.org/10.4194/1303-2712-v20_8_03
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Predictive models in ecology: Comparison of performances and assessment of applicability
Tan, Can Ozan; Ozesmi, Uygar; Beklioğlu, Meryem; Per, Esra; Kurt, Bahtiyar (Elsevier BV, 2006-04-01)
Ecological systems are governed by complex interactions which are mainly nonlinear. In order to capture the inherent complexity and nonlinearity of ecological, and in general biological systems, empirical models recently gained popularity. However, although these models, particularly connectionist approaches such as multilayered backpropagation networks, are commonly applied as predictive models in ecology to a wide variety of ecosystems and questions, there are no studies to date aiming to assess the perfo...
The influence of nutrient loading, climate and water depth on nitrogen and phosphorus loss in shallow lakes: a pan-European mesocosm experiment
Coppens, Jan; Hejzlar, Josef; Sorf, Michal; Jeppesen, Erik; Erdogan, Aeyda; Scharfenberger, Ulrike; Mahdy, Aldoushy; Noges, Peeter; Tuvikene, Arvo; Baho, Didier L.; Trigal, Cristina; Papastergiadou, Eva; Stefanidis, Kostas; Olsen, Saara; Beklioğlu, Meryem (2016-09-01)
Losses of phosphorus (P) and nitrogen (N) have important influences on in-lake concentrations and nutrient loading to downstream ecosystems. We performed a series of mesocosm experiments along a latitudinal gradient from Sweden to Greece to investigate the factors influencing N and P loss under different climatic conditions. In six countries, a standardised mesocosm experiment with two water depths and two nutrient levels was conducted concurrently between May and November 2011. Our results showed external ...
Modeling complex nonlinear responses of shallow lakes to fish and hydrology using artificial neural networks
Tan, Can Ozan; Beklioğlu, Meryem (Elsevier BV, 2006-07-10)
Mathematical abstractions may be useful in providing insight that is otherwise very difficult to obtain due to complex interactions in the ecosystems. The difficulty associated with the nonlinearity and complexity of ecological processes and interactions can be avoided with artificial neural networks (ANN) and generalized logistic models (GLMs) which are practically ANNs without hidden layer. An ANN and a GLM were developed to determine the probability of submerged plant occurrence in five shallow Anatolian...
Ecosystem and primary production interactions in three contrasting sites in thenorthern levantine basın
Yılmaz, Elif; Salihoğlu, Barış; Uysal, Zahit; Yumruktepe, Veli; Tezcan, Devrim; Örek, Hasan; Tuğrul, Süleyman (null; 2016-09-16)
To determine the effects of different nutrient dynamics in the Levatine Basin a 1-D multi component lower trophic ecosystem model is used and the carrying capacity and regulatory mechanisms of the nutrients on upper trophic levels at three contrasting marine sites in the Northeastern Mediterranean is assessed. Offshore waters of Mersin Bay, coastal sites of Erdemli and Rhodes Gyre is chosen as they represent distinctive characteristics in terms of nutrients dynamics. Model results suggest distinct mechanism...
Modeling and simulation of photobioreactors for biological hydrogen production
Androga, Dominic Deo; Eroğlu, İnci; Uyar, Başar; Department of Biotechnology (2014)
In applications of photofermentative hydrogen production, maintaining optimal temperature, feed composition, pH range and light intensity is the most critical objective for growth and proper functioning of the photosynthetic bacteria. Response Surface Methodology was applied to optimize temperature and light intensity for indoor hydrogen production using Rhodobacter capsulatus. Surface and contour plots of the regressions models developed revealed a maximum hydrogen production rate of 0.566 mol H2/m3/h at 2...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Akoğlu, “Simulating nutrient uptake dynamics in plankton models: A case study for the cilician basin marine ecosystem,”
Turkish Journal of Fisheries and Aquatic Sciences
, pp. 603–612, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32492.