Pesticide and model drug release from carboxymethylceullose microspheres

1996-01-01
Water soluble derivatives of cellulose are widely used in various biomedical and biotechnological applications. Sodium carboxymethyl cellulose was insolubilized in the form of microspheres using aluminium chloride as the crosslinking agent. It was observed that, depending on the preparation medium pH, the spherical product could either be a microsphere with an ionotropic interior or a microcapsule. Various microspheres with different crosslinker, biopolymer, and drug (2',7'-dichlorofluorescein and aldicarb) contents were prepared and their structures, properties, swelling behaviour and release kinetics investigated. The release kinetics could not be described by typical Fickian or non-Fickian approaches.
JOURNAL OF MICROENCAPSULATION

Suggestions

Facile control of hydroxyapatite particle morphology by utilization of calcium carbonate templates at room temperature
Oral, Çağatay M.; Çalışkan, Arda; Kapusuz, Derya; Ercan, Batur (Elsevier BV, 2020-09-01)
Hydroxyapatite (HAp, Ca-10(PO4)(6)(OH)(2)) particles are widely used in orthopedic applications due to their chemical resemblance to the inorganic component of bone tissue. Since physical and chemical properties of HAp particles influence bone regeneration, various synthesis techniques were developed to precisely control the particle properties. However, most of these techniques required high reaction temperatures, which limited the spectrum of obtained HAp particle morphologies. In this study, ellipsoidal,...
Oxygen plasma modification of polyurethane membranes
Ozdemir, Y; Hasırcı, Nesrin; Serbetci, K (2002-12-01)
Polyurethane membranes were prepared under nitrogen atmosphere by using various proportions of toluene diisocyanates (TDI) and polypropylene-ethylene glycol (P) with addition of no other ingredients such as catalysts, initiator or solvent in order to achieve medical purity. Effects of composition on mechanical properties were examined. In general, modulus and UTS values demonstrated an increase and PSBR demonstrated a decrease as the TDI/Polyol ratio of the polymer increased. Elastic modulus, ultimate tensi...
Synthesis of calcium carbonate particles for biomedical applications
Oral, Çağatay Mert; Ercan, Batur; Department of Metallurgical and Materials Engineering (2020)
Calcium carbonate (CaCO3) particles have been widely used in biomedical applications owing to their biocompatibility and biodegradability. In order to effectively utilize CaCO3 particles in biomedical applications, their physical and chemical properties should be systematically controlled. However, this is a challenging task due to the presence of three different anhydrous CaCO3 polymorphs having complex crystallization behavior. In this thesis, CaCO3 particles were synthesized at distinct environments to c...
Speciation of Selenium in Supplements by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry
BAKIRDERE, Sezgin; Volkan, Mürvet; Ataman, Osman Yavuz (2015-06-13)
Anion and cation exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma-mass spectrometry (ICP-MS) were used for speciation of selenium in supplements. All the parameters in the extraction, separation, and determination procedures were optimized. Recovery studies for the selenium species from the anion and cation exchange columns were performed and there were no analyte losses. Limits of detection for selenium(IV), selenium(VI), Se in selenomethionine, and Se in sele...
Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: Effect of polymer and carbon amounts
ÖZTÜRK, Ayşenur; FIÇICILAR, BERKER; Eroğlu, İnci; BAYRAKÇEKEN YURTCAN, Ayşe (2017-08-17)
Microporous layers (MPLs) were prepared with different hydrophobic polymers to establish water management in polymer electrolyte membrane (PEM) fuel cells. Besides conventionally used polymers polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP), two different molecular weights (MW) of polydimethylsiloxane (PDMS) polymer were used as hydrophobic materials in MPL. Membrane electrode assemblies (MEAs) having MPLs with low MW PDMS polymer exhibited the best fuel cell performance compared to ...
Citation Formats
R. Darvari and V. N. Hasırcı, “Pesticide and model drug release from carboxymethylceullose microspheres,” JOURNAL OF MICROENCAPSULATION, pp. 9–24, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32519.