Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces

2018-05-01
Osteogenicity and osteointegration of materials is one of the key elements of the success of bone implants. Poly(methyl methacrylate) (PMMA) is the basic compound of bone cement and has been widely investigated for other orthopedic applications, but its poor osteointegration and the subsequent loosening of implant material limits its widespread use as bone implants. Micropillar features on substrate surfaces were recently reported to modulate cell behavior through alteration of cell morphology and promotion of osteogenesis. Utilization of this pillar-decorated topography may be an effective approach to enhance osteogenicity of polymeric surfaces. The aim of this study was to investigate the effect of cell morphology on the micropillar features on attachment, proliferation, and osteogenic activity of human osteoblast-like cells. A series of solvent cast PMMA films decorated with 8 mu m high square prism micropillars with pillar width and interpillar distances of 4, 8 and 16 mu m were prepared from photolithographic templates, and primary human osteoblast-like cells (hOB) isolated from bone fragments were cultured on them. Micropillars increased cell attachment and early proliferation rate compared to unpatterned surfaces, and triggered distinct morphological changes in cell body and nucleus. Surfaces with pillar dimensions and gap width of 4 mu m presented the best osteogenic activity. Expression of osteogenic marker genes was upregulated by micropillars, and cells formed bone nodule-like aggregates rich in bone matrix proteins and calcium phosphate. These results indicated that micropillar features enhance osteogenic activity on PMMA films, possibly by triggering morphological changes that promote the osteogenic phenotype of the cells.
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE

Suggestions

Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates
Mavis, B; Tas, AC (2000-04-01)
Ti-6Al-4V alloy is the most commonly used metallic material in the manufacture of orthopedic implants. The main inorganic phase of human bone is calcium hydroxyapatite (Ca-10(PO4)(6)-(OH)(2), HA). To achieve better biocompatibility with bone, metal implants made of Ti-6Al-4V are often coated with bioceramics. Dip-coating techniques scarcely are used to apply HA onto metallic implants. New dipping-solution recipes to be used for HA coatings are described in this work. Scanning electron microscopy and X-ray d...
Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective
Ermiş Şen, Menekşe; Antmen Altunsoy, Ezgi; Hasırcı, Vasıf Nejat (2018-09-01)
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate o...
Tissue engineered cartilage on collagen and PHBV matrices
Kose, GT; Korkusuz, F; Ozkul, A; Soysal, Y; Ozdemir, T; Yildiz, C; Hasırcı, Vasıf Nejat (2005-09-01)
Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix (R)), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isola...
Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering
Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen (2016-12-01)
Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P-80/CA(20), P-50/CA(50), and F-20/CA(80)%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve ...
3D Porous Composite Scaffold of PCL-PEG-PCL/Sr2+ and Mg2+ Ions Co-Doped Borate Hydroxyapatite for Bone Tissue Engineering
Yedekçi, Buşra; Evis, Zafer; Tezcaner, Ayşen; Department of Engineering Sciences (2021-9-6)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped hydroxyapatite (HA) that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HAs were s...
Citation Formats
O. Hasturk, M. Ermiş, U. Demirci, N. Hasırcı, and V. N. Hasırcı, “Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces,” JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32587.