Tissue engineered cartilage on collagen and PHBV matrices

2005-09-01
Kose, GT
Korkusuz, F
Ozkul, A
Soysal, Y
Ozdemir, T
Yildiz, C
Hasırcı, Vasıf Nejat
Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix (R)), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isolated from the proximal humerus of 22 week-old male, adult, local albino rabbits. For cell type characterization, Type II collagen was measured by Western Blot analysis. The foams were seeded with 1 x 10(6) chondrocytes and histological examinations were carried out to assess cell-matrix interaction. Macroscopic examination showed that PHBV (with or without chondrocytes) maintained its integrity for 21 days, while CaP-Gelfix (R) was deformed and degraded within 15 days.

Suggestions

Surface functionalized poly-lactic acid (PLA) scaffolds for bone tissue engineering
Monirizad, Mahsa; Keskin, Dilek; Ermiş Şen, Menekşe; Department of Engineering Sciences (2022-2)
The need for more effective tissue grafts for orthopedic applications is one of the main research areas of tissue engineering. In bone tissue engineering (BTE), scaffolds that can mimic bone tissue both from mechanical and biological perspectives are investigated mostly. In this study, it was aimed to develop a BTE scaffold that can mimic bone ECM, mechanical strength and cell biocompatibility in a single design and thus, various groups of scaffolds were characterized in terms of mechanical, biocompatibilit...
Patient-specific orthopedic implant design and production with tissue engineering method
Büyüksungur, Senem; Hasırcı, Vasıf Nejat; Department of Biotechnology (2019)
Customized and patient specific, tissue engineered constructs are needed for the treatment of irregular shaped bone defects. This study presents the preparation of two different 3D printed scaffolds. 1) PCL-based scaffolds modified with nanohydroxyapatite (HAp) and poly(propylene fumarate) (PPF), and 2) Cell carrying hybrid scaffolds of PCL/GelMA. 3D printed, PCL-based scaffolds were coated with HAp or HAp/PPF before cell seeding and their presence enhanced osteoconductivity and compressive mechanical stren...
Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization
Kayabolen, Alisan; Keskin, Dilek; Aykan, Andac; Karslioglu, Yildirim; Zor, Fatih; Tezcaner, Ayşen (IOP Publishing, 2017-06-23)
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and si...
Polymeric scaffolds for bioactive agent delivery in bone tissue engineering
Uçar, Şeniz; Hasırcı, Nesrin; Yılgör, Pınar; Department of Chemistry (2012)
Tissue engineering is a multidisciplinary field that is rapidly emerging as a promising new approach in the restoration and reconstruction of tissues. In this approach, three dimensional (3D) scaffolds are of great importance. Scaffolds function both as supports for cell growth and depot for sustained release of required active agents (e.g. enzymes, genes, antibiotics, growth factors). Scaffolds should possess certain properties in accordance with usage conditions. Wet-spinning is a simple technique that ha...
Development of microcarrier systems for bone tissue engineering
Aydoğdu, Hazal; Tezcaner, Ayşen; Baran, Erkan Türker; Department of Biomedical Engineering (2015)
Current strategies in bone tissue engineering have largely focused on development of carrier systems for repair and regeneration of bone tissue defects. The microcarrier systems offer an efficient method of delivery of cells with non-invasive injectable system. In this study, three-dimensional hydrogel microspheres were developed via water-in-oil emulsion method. In the first part of the thesis, porous pullulan (PULL) microspheres, with average size of 153±46 µm, were prepared and the surface of the microsp...
Citation Formats
G. Kose et al., “Tissue engineered cartilage on collagen and PHBV matrices,” BIOMATERIALS, pp. 5187–5197, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32023.