Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization
Date
2017-06-23
Author
Kayabolen, Alisan
Keskin, Dilek
Aykan, Andac
Karslioglu, Yildirim
Zor, Fatih
Tezcaner, Ayşen
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and silk fibroin (Fib) at different v/v ratios (3:1, 1:1 and 1:3) and vortexing. Gelation times decreased with increasing fibroin ratio Among hydrogel groups 1:3-DAT: Fib ratio group showed similar mechanical properties with adipose tissue. Both pre-adipocytes and pre-endothelial cells, pre-differentiated from adipose derived stem cells (ASCs), were encapsulated in hydrogels at a 1:3 ratio. In vitro analyses showed that hydrogels with 1:3 (v/v) DAT: Fib ratio supported better cell viability. Pre-adipocytes had lipid vesicles, and pre-endothelial cells formed tubular structures inside hydrogels only after 3 days in vitro. When endothelial and adipogenic pre-differentiated ASCs (for 7 days before encapsulation) were encapsulated together into 1:3-DAT: Fib hydrogels both cell types continued to differentiate into the committed cell lineage. Vascularization process in the hydrogels implanted with adipogenic and endothelial pre-differentiated ASCs took place between the first and second week after implantation which was faster than observed in the empty hydrogels. ASCs pre-differentiated towards adipogenic lineage inside hydrogels had begun to accumulate lipid vesicles after 1 week of subcutaneous implantation Based on these results, we suggest that 1:3-DAT: Fib hydrogels with enhanced vascularization hold promise for adipose tissue engineering.
Subject Keywords
Bioengineering
,
Biomaterials
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/48966
Journal
BIOMEDICAL MATERIALS
DOI
https://doi.org/10.1088/1748-605x/aa6a63
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration
Pazarçeviren, Ahmet Engin; Evis, Zafer; Keskin, Dilek; Tezcaner, Ayşen (IOP Publishing, 2019-05-01)
Guided bone regeneration (GBR) is a therapeutic modality applied prior to dental implant placement to increase bone density at the defect site or during placement for directing bone growth around implant. In this study, an asymmetric, bilayer structure was prepared by covalently bonding a dense polycaprolactone-polyethylene glycol-polycaprolactone (PCEC) membrane layer with a hydrogel layer composed of bismuth doped bioactive glass (BG, 45S5) and graphene oxide (GO) particles incorporated in gelatin. Struct...
Integrated biomimetic scaffolds for soft tissue engineering
Güven, Sinan; Hasırcı, Nesrin; Department of Biotechnology (2006)
Tissue engineering has the potential to create new tissue and organs from cultured cells for transplantation. Biodegradable and biocompatible scaffolds play a vital role in the transfer of the cultured cells to a new tissue. Various scaffolds for soft tissue engineering have been developed, however there is not any structure totally mimicking the natural extracellular matrix (ECM), ready to use. In this study biodegradable and biocompatible scaffolds were developed from natural polymers by tissue engineerin...
Interdependence of pulsed ultrasound and shear stress effects on cell morphology and gene expression
Mccormick, Susan M.; Saini, Vikas; Yazıcıoğlu, Yiğit; Demou, Zoe N.; Royston, Thomas J. (Springer Science and Business Media LLC, 2006-03-01)
Fluid shear stress is a key biomechanical regulatory factor in a several biological systems including bone tissue. Bone cells are also regulated by exogenous acoustic vibration, which has therapeutic benefits. In this study, we determined the effects of shear stress and pulsed ultrasound (US), alone and in series on osteoblast morphology and gene expression. We observed that shear stress (19 dyne/cm(2)) elongated SaOS-2 cells at 3, 6, 24, and 48 h decreasing their shape index from control values of 0.51 +/-...
Development of electrically conductive porous silk fibroin/CNF scaffolds.
Tufan, Yiğithan; Garipcan, B; Ercan, B (IOP Publishing, 2020-10-22)
Tissue engineering applications typically require 3D scaffolds which provide requisite surface area for cellular functions, while allowing nutrient, waste and oxygen transportation with the surrounding tissues. Concurrently, scaffolds should ensure sufficient mechanical properties to provide mechanically stable frameworks under physiologically relevant stress levels. In the meantime, electrically conductive platforms are also desired for the regeneration of specific tissues, where electrical impulses are tr...
Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering
Fathi-Achachelouei, Milad; Keskin, Dilek; Bat, Erhan; Vrana, Nihal E.; Tezcaner, Ayşen (Wiley, 2020-07-01)
Degeneration of articular cartilage due to damages, diseases, or age-related factors can significantly decrease the mobility of the patients. Various tissue engineering approaches which take advantage of stem cells and growth factors in a three-dimensional constructs have been used for reconstructing articular tissue. Proliferative impact of basic fibroblast growth factor (bFGF) and chondrogenic differentiation effect of transforming growth factor-beta 1 (TGF-beta 1) over mesenchymal stem cells have previou...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Kayabolen, D. Keskin, A. Aykan, Y. Karslioglu, F. Zor, and A. Tezcaner, “Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization,”
BIOMEDICAL MATERIALS
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48966.