Single-component layer-by-layer weak polyelectrolyte films and capsules: Loading and release of functional molecules

Kozlovskaya, V. A.
Kharlampieva, E. P.
Erel Göktepe, İrem
Sukhishvili, S. A.
Poly(carboxylic acid) hydrogel films and hollow capsules undergo reversible size changes in response to variations in pH and/or ionic strength. The films and capsules were obtained from hydrogenbonded poly-N-vinylpyrrolidone/poly(carboxylic acid) layer-by-layer films by chemical crosslinking of the polyacid, followed by pH-induced removal of poly-N-vinylpyrrolidone. Surface-attached hydrogel films present attractive matrices for reversible pH-stimulated loading and/or controlled release of large amounts of synthetic or natural macromolecules including proteins. By varying acidity of poly(carboxylic acids), the hydrogel swelling and the corresponding values of pH for encapsulation/release of functional molecules could be tuned in a wide range from pH 5 to 10. In addition, the capsules are capable of entrapping macromolecules by "locking" the capsule wall with an electrostatically associating polycation, followed by the release of the encapsulated macromolecules at high salt concentrations.


Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H
Saleh, Z. M.; NASSER, H; ÖZKOL, E; GÜNÖVEN, M; Abak, Musa Kurtuluş; Canlı, Sedat; Bek, Alpan; Turan, Raşit (2015-10-24)
Plasmonic interfaces consisting of silver nanoparticles of different sizes (50-100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size an...
Multi-crystalline silicon solar cells with metal-assisted nano-texturing using HNO3 as hole injection agent
Es, Fırat; Baytemir, Gulsen; Kulakci, Mustafa; Turan, Raşit (2016-12-01)
In this study, metal-assisted etching (MAE) with nitric acid (HNO3) as a hole injecting agent has been employed to texture multi-crystalline silicon wafers. It was previously proven that addition of HNO3 enabled control of surface texturing so as to form nano-cone shaped structures rather than nanowires. The process parameters optimized for optically efficient texturing have been applied to multi-crystalline wafers. Fabrication of p-type Al: BSF cells have been carried out on textured samples with thermal S...
Miscibility of methylmethacrylate-co-methacrylic acid polymer with magnesium, zinc, and manganese sulfonated polystyrene ionomers
Alkan, C; Yurtseven, N; Aras, L (2005-01-01)
The miscibility of methyl methacrylate-co-methacrylic acid polymer (MMA-MAA) with metal neutralized sulfonated polystyrene ionomers was investigated by viscometry, differential scanning calorimetry (DSC), and Fourier transform infrared radiation spectroscopy (FTIR) techniques. Polystyrene (PS) was sulfonated by acetic anhydride and sulfuric acid and the sulfonation degree was found to be 2.6 mole percent, and 2.6 mole percent sulfonated polystyrene was neutralized by Mg, Zn, and Mn salts. The miscibility be...
Thermal degradation of poly(p-phenylene-graft-ε-caprolactone) copolymer
Nur, Yusuf; Yurteri, Seda; Cianga, Ioan; Yagci, Yusuf; Hacaloğlu, Jale (2007-01-01)
The thermal degradation of poly (p-phenylene-graft-epsilon-caprolactone) (PPP), synthesized by Suzuki polycondensation of poly(E-caprolactone) (PCL) with a central 2,5-dibromo-1,4-benzene on the chain with 1,4-phenylene-diboronic acid, has been studied via direct pyrolysis mass spectrometry. The thermal degradation occurred mainly in two steps. In the first step, decomposition of PCL chains occurred. A slight increase in thermal stability of PCL chains was noted. In the second stage of pyrolysis, the decomp...
Highly Crystalline Poly(L-lactic acid) Porous Films Prepared with CO2-philic, Hybrid, Liquid Cell Nucleators
Culhacioglu, Yagmur; Hasırcı, Nesrin; Dilek Hacıhabiboğlu, Çerağ (2019-12-18)
Supercritical CO2 (scCO(2)) foaming of poly(L-lactic acid) composite films with liquid polyhedral oligomeric silsesquioxanes (PLLA-POSS) was carried out to obtain polymer matrices for drug delivery applications. Highly crystalline (>45%) PLLA generally requires high supercritical processing (saturation) temperatures close to its melting temperature (similar to 450 K) and pressures about or over 20 MPa for foaming with scCO(2). To decrease the saturation temperature and obtain ductile PLLA films with uniform...
Citation Formats
V. A. Kozlovskaya, E. P. Kharlampieva, İ. Erel Göktepe, and S. A. Sukhishvili, “Single-component layer-by-layer weak polyelectrolyte films and capsules: Loading and release of functional molecules,” POLYMER SCIENCE SERIES A, pp. 719–729, 2009, Accessed: 00, 2020. [Online]. Available: